I. , Etat de l'art de la technologie mémoire

, 4) Organisation des mémoires à transistor

, 5) Limites des mémoires à transistor

, Tableau comparatif des mémoires actuelles et émergentes

, 4) Conduction non filamentaire

1. .. Architecture,

, 1) Complementary Resistive Switch

, Conclusion et positionnement du projet

, II. Propriété des nanoparticules d'oxyde d'indium et conception de la cellule mémoire

, Description de l'oxyde d'indium

.. .. ,

. .. , 3. 2) Accumulation d'électrons en surface, Propriétés électriques des nanoparticules d'oxyde d'indium

, Techniques de fabrication des nanoparticules d'oxyde d'indium

, Dépôt CVD de nanoparticules d'oxyde d'indium, II. 5. Implantation ionique d'indium dans un oxyde

, Procédé de fabrication des cellules mémoires à nanoparticules d'oxyde d'indium

, 3. 2) Dépôt des nanoparticules d'oxyde d'indium par MOCVD

. .. , 4. 4) Influence des paramètres de dépôts sur la croissance de nanoparticules 63 ? Influence de la température, Procédé de dépôt des nanoparticules d'oxyde d'indium

, Contrôle du dépôt des nanoparticules par MOCVD avec un procédé en deux étapes : 70 III. 5. 1) Problématique de nucléation des nanoparticules en continu, p.70

, 3) Croissance des nanoparticules à densité constante

H. Iwai, Future of nano CMOS technology, Solid. State. Electron, vol.112, pp.56-67, 2015.

S. Souiki-figuigui, Étude de la fiabilité de mémoires PCRAM : analyse et optimisation de la stabilité des états programmés, 2015.

M. Yu, Novel Vertical 3D Structure of TaO x -based RRAM with Self-localized Switching Region by Sidewall Electrode Oxidation, Nat. Publ. Gr, pp.1-10, 2015.

P. C. Lacaze, Mémoires électroniques : concepts, matériaux, dispositifs et technologies. ISTE Editions, 2014.

S. Natarajan and S. Chung, Searching for the dream embedded memory, IEEE SOLID-STATE CIRCUITS Mag, vol.09, pp.34-44, 1943.

M. H. Kryder and C. S. Kim, After Hard Drives -What Comes Next ?, IEEE Trans. Magn, vol.45, issue.10, pp.3406-3413, 2009.

K. Ishimaru, Non-Volatile Memory Technology for Data Age, 14th IEEE Int. Conf. Solid-State Integr. Circuit Technol. ICSICT 2018 -Proc, pp.1-4, 2018.

, International Technology Roadmap for Semiconductors, Int. Technol. ROADMAP Semicond, 2015.

. Samsung, Samsung Launches Highest-capacity Mobile DRAM to Accommodate Next-generation Smartphones -Samsung Global Newsroom, p.6, 2019.

. Intel, Unité de stockage SSD Intel® série 660p (512 Go, PCIe* 3.0 x4 M.2 80 mm, vol.3, p.3, 2018.

. Samsung, KLUGGAR1FA-B2C1 -Samsung Semiconductor Global website, p.3, 2019.

J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Res. Lett, vol.9, issue.1, pp.1-33, 2014.

H. Ishiwara, Ferroelectric Random Access Memories, J. Nanosci. Nanotechnol, vol.12, issue.10, pp.7619-7627, 2012.

, International Technology Roadmap for Semiconductors, Int. Technol. ROADMAP Semicond, 2015.

G. Palma, Nouvelles Architectures Hybrides: Logique / Mémoires Non-Volatiles et technologies associées, 2014.

S. Balatti, S. Ambrogio, and D. Ielmini, Normally-off Logic Based on Resistive Switches -Part I : Logic Gates, IEEE Trans. Electron Devices, vol.62, issue.6, pp.1831-1838, 2015.

W. Zhang, H. Wu, P. Yao, B. Gao, and H. Qian, A compact model of analog RRAM for neuromorphic computing system design, 2018 China Semiconductor Technology International Conference, pp.1-3, 2018.

R. Bez and P. Cappelletti, Emerging Memory Technology Perspective, IEEE, vol.12, issue.978, 2012.

. Toshiba, NAND vs . NOR Flash Memory Technology Overview, 2006.

D. L. Lewis and H. S. Lee, Architectural Evaluation of 3D Stacked RRAM Caches, IEEE International Conference on 3D System Integration, 2009.

M. Moreau, Estimating the Energy Consumption of Emerging Random Access Memory Technologies, 2013.

M. Hesse, A. Regnier, and P. Masson, Développement de mémoires non-volatiles embarquées pour les plateformes technologiques avancées 40nm et 28nm

S. Rousset, , 2016.

L. Chua, Memristor -The missing circuit element, Trans. Circuit Theory, issue.5, pp.507-519, 1971.

S. H. Jo, Recent Progress in RRAM : Materials and Devices, SEMICON Korea, 2015.

T. W. Hickmott, Low -Frequency Negative Resistance in Thin Anodic Oxide Films, J. Appl. Phys, vol.33, issue.9, pp.2669-2682, 1962.

W. R. Hiatt and T. W. Hickmott, Bistable switching in niobium oxide diodes, Appl. Phys. Lett, vol.6, issue.6, pp.106-108, 1965.

S. E. Tirano, Intégration et caractérisation électrique d'éléments de mémorisation à commutation de résistance de type back-end à base d'oxydes métalliques, 2013.

G. Baek, Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses, IEEE, vol.04, pp.587-590, 2004.

R. Foissac, Étude à l'échelle nanométrique par sonde locale de la fiabilité et de la dégradation de films minces d'oxyde pour applications MOS et MIM, 2015.

B. H. Wong, Metal -Oxide RRAM, IEEE, vol.100, issue.6, pp.1951-1970, 2012.

L. Courtade, Développement , mécanismes de programmation et fiabilité de mémoires non volatiles à commutation de résistance MRAM et OxRRAM, 2009.

M. Lanza, A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope, Materials, vol.7, issue.3, pp.2155-2182, 2014.

F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang et al., Nonvolatile resistive switching memories-characteristics, mechanisms and challenges, Prog. Nat. Sci. Mater. Int, vol.20, pp.1-15, 2010.

Y. Fan, M. Al-mamun, B. Conlon, S. King, and M. Orlowski, Resistive Switching Comparison Between Cu/TaOx/Ru and Cu/TaOx/Pt Memory Cells, vol.75, pp.13-23, 2017.

M. Saadi, On the mechanisms of cation injection in conducting bridge memories : The case of HfO2 in contact with noble metal anodes ( Au , Cu , Ag ), J. Appl. Phys, vol.119, issue.114501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01882760

R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nat. Mater, vol.6, pp.833-840, 2007.

J. Guy, Evaluation des performances des mémoires CBRAM ( Conductive Bridge Memory ) afin d ' optimiser les empilements technologiques et les solutions d ' intégration, 2015.

M. Kozicki, M. Mitkova, and I. Valov, Electrochemical Metalization Memories, Resistive Switching: From Fundamentals of Nanoionic Redox Processes toMemristive Device Applications, pp.483-513, 2016.

I. Valov, R. Waser, J. Jameson, and M. Kozicki, Electrochemical metallization memories---fundamentals, applications, prospects, Nanotechnology, vol.22, issue.254003, pp.1-22, 2011.

F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Recent progress in resistive random access memories : Materials , switching mechanisms , and performance, Mater. Sci. Eng. R, vol.83, pp.1-59, 2014.

W. Banerjee, X. Xu, H. Lv, Q. Liu, S. Long et al., Complementary Switching in 3D Resistive Memory Array, Adv. Electron. Mater, vol.3, issue.12, pp.1-7, 2017.

F. Stefano, M. Houssa, V. V. Afanas'ev, J. A. Kittl, M. Jurczak et al., Nature of the filament formed in HfO2-based resistive random access memory, Thin Solid Films, vol.533, pp.15-18, 2013.

R. Waser, R. Dittmann, M. Salinga, and M. Wuttig, Fonction by defects at the atomic scale, Solid State Electron, vol.54, pp.830-840, 2010.

F. Kurnia, C. U. Hadiyawarman, R. Jung, C. Jung, and . Liu, Composition dependence of unipolar resistance switching in TaOx thin films, Phys. Status Solidi -Rapid Res. Lett, vol.5, issue.7, pp.253-255, 2011.

C. Cagli, Experimental and theoretical study of electrode effects in HfO2 based RRAM, Int. Electron Devices Meet, vol.3, 2011.

X. Y. Li, X. L. Shao, Y. C. Wang, H. Jiang, C. S. Hwang et al., Thin TiOx layer as a voltage divider layer located at the quasi-Ohmic junction in the Pt/Ta2O5/Ta resistance switching memory, 2017.

K. Chang, Space electric field concentrated effect for Zr : SiO 2 RRAM devices using porous SiO 2 buffer layer, Nanoscale Res. Lett, vol.8, issue.523, pp.2-6, 2013.

M. Bocquet, Robust compact model for bipolar oxide-based resistive switching memories, IEEE Trans. Electron Devices, vol.61, issue.3, pp.674-681, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01737291

C. Chen, C. Song, J. Yang, F. Zeng, and F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaO x/Pt structure, Appl. Phys. Lett, vol.100, issue.25, pp.2010-2014, 2012.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox -Based Resistive Switching Memories -Nanoionic Mechanisms , Prospects , and Challenges Redox-Based Resistive Switching Memories -Nanoionic Mechanisms , Prospects , and Challenges, Adv. Mater, vol.21, pp.2632-2663, 2009.

S. Blonkowski and T. Cabout, Bipolar resistive switching from liquid helium to room temperature, J. Phys. D. Appl. Phys, p.345101

D. Lee, Resistance switching of copper doped MoO x films for nonvolatile memory applications Resistance switching of copper doped MoO x films for nonvolatile memory, Appl. Phys. Lett, vol.90, issue.122104, 2007.

Q. Liu, Formation of multiple conductive filaments in the Cu / ZrO 2 : Cu / Pt device, Appl. Phys. Lett, vol.95, issue.023501, 2009.

S. Akihito, Resistive switching in transition metal oxides, Materialstoday, vol.11, issue.6, pp.28-36, 2008.

V. Dubost, Étude par microscopie/spectroscopie tunnel de la transition isolant/métal induite par pulse electriques dans GaTa4Se8, 2010.

Y. S. Chen, Challenges and Opportunities for HfO X Based Resistive Random Access Memory, IEee, vol.11, pp.717-720, 2011.

W. Guan, S. Long, and Q. Liu, Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO 2, IEEE Electron Device Lett, vol.29, issue.5, pp.434-437, 2008.

Q. Liu, Low-Power and Highly Uniform Switching in ZrO 2 -Based ReRAM With a Cu Nanocrystal Insertion Layer, IEEE Electron Device Lett, vol.31, issue.11, pp.1299-1301, 2010.

K. Chang, Improvement of Resistive Switching Characteristic in Silicon Oxide-Based RRAM Through Hydride-Oxidation on Indium Tin Oxide Electrode by Supercritical CO 2 Fluid, IEEE Electron Device Lett, vol.36, issue.6, pp.558-560, 2015.

G. Ghosh, Y. Kang, S. W. King, and M. Orlowski, Role of CMOS Back-End Metals as Active Electrodes for Resistive Switching in ReRAM Cells, ECS J. Solid State Sci. Technol, vol.6, issue.1, pp.1-9, 2016.

J. and J. Yang, The mechanism of electroforming of metal oxide memristive switches, Nanotechnology, vol.20, issue.21, 2009.

Q. Liu, Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode, ACSNANO, vol.4, issue.10, pp.6162-6168, 2010.

T. Tsai, Bipolar Resistive RAM Characteristics Induced by Nickel Incorporated Into Silicon Oxide Dielectrics for IC Applications, IEEE Electron Device Lett, vol.33, issue.12, pp.1696-1698, 2012.

Y. C. Ju, Resistance random access memory based on a thin film of CdS nanocrystals prepared via colloidal synthesis, Small, vol.8, issue.18, pp.2849-2855, 2012.

J. H. Yoon, Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots, Adv. Mater, vol.25, issue.14, pp.1987-1992, 2013.

S. C. Qin, R. X. Dong, and X. L. Yan, Memristive behavior of Al2O3film with bottom electrode surface modified by Ag nanoparticles, Appl. Phys. A Mater. Sci. Process, vol.118, issue.2, pp.605-612, 2014.

W. Banerjee, Q. Liu, S. Long, H. Lv, and M. Liu, Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory, J. Phys. D. Appl. Phys, vol.50, issue.30, p.303002, 2017.

B. Choi, A. Chen, X. Yang, and I. Chen, Purely Electronic Switching with High Uniformity , Resistance Tunability , and Good Retention in Pt-Dispersed SiO 2 Thin Films for ReRAM, Adv. Mater, vol.23, pp.3847-3852, 2011.

Q. D. Ling, D. J. Liaw, C. Zhu, D. S. Chan, E. T. Kang et al., Polymer electronic memories: Materials, devices and mechanisms, Prog. Polym. Sci, vol.33, issue.10, pp.917-978, 2008.

E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Complementary resistive switches for passive nanocrossbar memories, Nat. Mater, vol.9, issue.5, pp.403-406, 2010.

B. H. Akinaga and H. Shima, Resistive Random Access Memory ( ReRAM ) Based on Metal Oxides, IEEEE, vol.98, issue.12, pp.2237-2251, 2010.

Y. Yang, P. Sheridan, W. Lu, Y. Yang, P. Sheridan et al., Complementary resistive switching in tantalum oxide-based resistive memory devices Complementary resistive switching in tantalum oxide-based resistive memory devices, vol.203112, 2012.

D. and R. W. Vest, Thermodynamic Properties of the System Indium-Oxygen, J. Am. Ceram. Soc, vol.55, issue.11, pp.575-578, 1972.

D. R. Lire, CRC Handbook of Chemistry and Physics, 2007.

A. Walsh, Nature of the Band Gap of In 2 O 3 Revealed by First-Principles Calculations and X-Ray Spectroscopy, Phys. Rev. Lett, vol.100, issue.167402, 2008.

J. Liu, T. Liu, F. Liu, and H. Li, Thermodynamics of native defects in In2O3crystals using a first-principles method, RSC Adv, vol.4, issue.70, pp.36983-36989, 2014.

A. Klein, Electronic properties of Electronic properties of In 2 O 3 surfaces, Appl. Phys. Lett, vol.77, issue.13, 2000.

L. Francioso, A. Forleo, S. Capone, M. Epifani, A. M. Taurino et al., Nanostructured In 2 O 3 -SnO 2 sol -gel thin film as material for NO 2 detection, vol.114, pp.646-655, 2006.

M. Marezio, Refinement of the crystal structure of In2O3 at two wavelengths, Acta Crystallogr, vol.20, issue.6, pp.723-728, 1966.

G. Legeay, Couches minces amorphes d'ITO : caractérisation , structure , évolution et fonctionnalisation sous rayonnements UV, 2011.

K. Daoudi, &. Elaboration, . Caracterisation-de-films-minces-d'oxyde-d'indium-dope-a-l'etain-obtenus-par, and . Voie-sol-gel, , 2006.

N. Mitoma, Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies, Appl. Phys. Lett, vol.104, issue.10, pp.1-6, 2014.

C. T. Prewitt, R. D. Shannon, D. B. Rogers, and A. W. Sleight, The c rare earth oxidecorundum transition and crystal chemistry of oxides having the corundum structure, Inorg. Chem, vol.8, issue.9, pp.1985-1993, 1969.

D. Yu, D. Wang, and Y. Qian, Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure, J. Solid State Chem, vol.177, issue.4-5, pp.1230-1234, 2004.

D. B. Buchholz, D. E. Proffit, M. D. Wisser, T. O. Mason, and R. P. Chang, Electrical and band-gap properties of amorphous zinc-indium-tin oxide thin films, Prog. Nat. Sci. Mater. Int, vol.22, issue.1, pp.1-6, 2012.

G. J. Exarhos and X. D. Zhou, Discovery-based design of transparent conducting oxide films, Thin Solid Films, vol.515, issue.18, pp.7025-7052, 2007.

D. B. Buchholz, The structure and properties of amorphous indium oxide, Chem. Mater, vol.26, issue.18, pp.5401-5411, 2014.

T. Koida, Amorphous and crystalline In2O3-based transparent conducting films for photovoltaics, Phys. Status Solidi Appl. Mater. Sci, vol.214, issue.2, pp.1-15, 2017.

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, Electrical and optical properties of amorphous indium oxide, J. Phys. Condens. Matter, vol.2, issue.28, pp.6207-6221, 1990.

J. J. Meléndez and M. Wierzbowska, In2O3 Doped with Hydrogen: Electronic Structure and Optical Properties from the Pseudopotential Self-Interaction Corrected Density Functional Theory and the Random Phase Approximation, J. Phys. Chem. C, vol.120, issue.7, pp.4007-4015, 2016.

P. D. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell et al., Surface electron accumulation and the charge neutrality level in In2O3, Phys. Rev. Lett, vol.101, issue.11, pp.2-5, 2008.

L. Gupta, A. Mansingh, and P. K. Srivastava, Band gap narrowing and the band structure of tin-doped indium oxide films, Thin Solid Films, vol.176, issue.1, pp.33-44, 1989.

N. Novkovski and A. Tanuevski, Origin of the optical absorption of In2O3thin films in the visible range, Semicond. Sci. Technol, vol.23, issue.9, 2008.

A. Bourlange, Growth of In2O3 (100) on Y-stabilized ZrO 2(100) by O-plasma assisted molecular beam epitaxy, Appl. Phys. Lett, vol.92, issue.9, pp.2012-2015, 2008.

D. R. Hagleitner, Bulk and surface characterization of In 2O 3(001) single crystals, Phys. Rev. B -Condens. Matter Mater. Phys, vol.85, issue.11, pp.0-11, 2012.

J. C. Fan and J. B. Goodenough, X-ray photoemission spectroscopy studies of Sndoped indium-oxide films, J. Appl. Phys, vol.48, issue.8, pp.3524-3531, 1977.

A. Walsh and C. R. Catlow, Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory, J. Mater. Chem, vol.20, issue.46, pp.10438-10444, 2010.

A. Klein, Surface potentials of magnetron sputtered transparent conducting oxides, Thin Solid Films, vol.518, pp.1197-1203, 2009.

S. Lany, Surface origin of high conductivities in undoped In 2O 3 thin films, Phys. Rev. Lett, vol.108, issue.1, pp.2-6, 2012.

M. Feneberg, Many-electron effects on the dielectric function of cubic In2 O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift, Phys. Rev. B, vol.93, issue.4, 2016.

H. Nakazawa, Y. Ito, E. Matsumoto, K. Adachi, N. Aoki et al., The electronic properties of amorphous and crystallized In2O3 films, J. Appl. Phys, vol.100, issue.9, pp.233-240, 2006.

D. Zhang, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett, vol.4, issue.10, pp.1919-1924, 2004.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Ordered indium-oxide nanowire arrays and their photoluminescence properties, Appl. Phys. Lett, vol.79, issue.6, pp.839-841, 2001.

A. Gurlo, Grain size control in nanocrystalline In2O3 semiconductor gas sensors, Sensors Actuators, B Chem, vol.44, issue.1-3, pp.327-333, 1997.

A. Gilstrap, A COLLOIDAL NANOPARTICLE FORM OF INDIUM TIN OXIDE: SYSTEM DEVELOPMENT AND CHARACTERIZATION, 2009.

Q. Liu, W. Lu, A. Ma, J. Tang, J. Lin et al., Study of Quasi-Monodisperse In 2 O 3 Nanocrystals : Synthesis and Optical Determination, pp.5276-5277, 2005.

A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, and W. G. Spel, Sol-gel prepared In 2 0 3 thin films, vol.307, pp.288-293, 1997.

J. F. Ziegler, Ion Implantation Science and Technology, IBM Resear, 1984.

J. S. Williams and J. M. Poate, Ion Implantation and Beam Processing, 1984.

P. Santhana-raman, K. G. Nair, R. Kesavamoorthy, B. K. Panigrahi, S. Dhara et al., Formation and growth of embedded indium nanoclusters by In2+ implantation in silica, Appl. Phys. A Mater. Sci. Process, vol.87, issue.4, pp.709-713, 2007.

C. Bonafos, Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories, Mater. Res. Express, vol.5, issue.1, p.15027, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701543

H. W. Kim, N. H. Kim, and C. Lee, An MOCVD route to In2O3one-dimensional materials with novel morphologies, Appl. Phys. A Mater. Sci. Process, vol.81, issue.6, pp.1135-1138, 2005.

J. Ni, MOCVD-derived highly transparent, conductive zinc-and tin-doped indium oxide thin films: Precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes, J. Am. Chem. Soc, vol.127, issue.15, pp.5613-5624, 2005.

C. Y. Wang, Photoreduction and oxidation behavior of In2 O3 nanoparticles by metal organic chemical vapor deposition, J. Appl. Phys, vol.102, issue.4, 2007.

D. V. Shenai-khatkhate, R. L. Dicarlo, and R. A. Ware, Accurate vapor pressure equation for trimethylindium in OMVPE, J. Cryst. Growth, vol.310, issue.7-9, pp.2395-2398, 2008.

M. A. Herman, W. Richter, and H. Sitter, Epitaxy -Physical Principles and Technical Implementation, vol.62, 2004.

F. Mazen, Nanocristaux De Silicium Élaborés Par Dépôt Chimique En Phase Vapeur Pour Dispositifs Nanoélectroniques, 2003.

S. P. Kim, Charging effect of In2O3 nano-particles embedded in polyimide layer for application as non-volatile nano-floating gate memory, Curr. Appl. Phys, vol.9, issue.1, pp.43-46, 2009.

D. Wang, Resistive Switching and Synaptic Behaviors of TaN/Al2O3/ZnO/ITO Flexible Devices With Embedded Ag Nanoparticles, IEEE Electron Device Lett, vol.37, issue.7, pp.878-881, 2016.

J. Yi, Highly reliable and fast nonvolatile hybrid switching ReRAM memory using thin Al<inf>2</inf>O<inf>3</inf> demonstrated at 54nm memory array, Symp. VLSI Technol. -Dig. Tech. Pap, pp.48-49, 2011.

S. M. Sze and M. K. Lee, Semiconductor devices : Physics and technology, 2010.

S. Sze, Physics of semicondutor devices, 1981.

J. Robertson, Band offsets of high dielectric constant gate oxides on silicon, J. Non. Cryst. Solids, vol.303, issue.4, pp.94-100, 2002.

J. Robertson and B. Falabretti, Band offsets of high K gate oxides on high mobility semiconductors, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.135, issue.3, pp.267-271, 2006.

L. Kornblum, J. A. Rothschild, Y. Kauffmann, R. Brener, and M. Eizenberg, Band offsets and Fermi level pinning at metal-Al2O3 interfaces, Phys. Rev. B -Condens. Matter Mater. Phys, vol.84, issue.15, pp.23-26, 2011.

J. L. Zilko, Metal Organic Chemical Vapor Deposition : Technology and Equipment, Handb. Thin Film Depos, pp.151-203, 2001.

P. Violet, Etude thermodynamique et expérimentale du dépôt ALD (Atomic Layer Deposition) de TaN et de son précurseur organométallique PDMAT, Ta [ N ( CH3 ) 2 ] 5 , utilisé en microélectronique, 2009.

C. Lin, D. Lee, S. Wang, C. Lin, and T. Tseng, Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices, Surf. Coatings Technol, vol.203, issue.5-7, pp.628-631, 2008.

V. Raj, A. K. Chauhan, and G. Gupta, Growth kinetics of indium metal atoms on Si(112) surface, Mater. Res. Bull, vol.72, pp.286-290, 2015.

E. Cottancin, C. Langlois, J. Lermé, M. Broyer, M. A. Lebeault et al., Plasmon spectroscopy of small indium-silver clusters: Monitoring the indium shell oxidation, Phys. Chem. Chem. Phys, vol.16, issue.12, pp.5763-5773, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01808071

M. G. Jacko and S. J. Price, THE PYROLYSIS OF TRIMETHYLINDIUM, Can. J. Chem, vol.42, issue.5, pp.1198-1205, 1964.

M. Faur, M. Faur, D. T. Jayne, M. Goradia, and C. Goradia, XPS Investigation of Anodic Oxides Grown on p-Type InP, Surf. Interface Anal, vol.15, 1990.

J. M. Nedeljkovi?, O. I. Mi?i?, S. P. Ahrenkiel, and A. J. Nozik, Synthesis and characterization of III-V rod shape semiconductor nanocrystals, Mater. Sci. Forum, vol.494, pp.121-128, 2005.

L. Hitchman and K. F. Jensen, Chemical vapor deposition: Principles and applications, 1993.

G. Nicotra, S. Lombardo, R. Puglisi, C. Spinella, G. Ammendola et al., Observation of the nucleation kinetics of Si quantum dots on SiO2 by EFTEM, Microsc. Semicond. Mater, vol.205, pp.119-122, 2003.

D. Prime, S. Paul, and P. W. Josephs-franks, Gold nanoparticle charge trapping and relation to organic polymer memory devices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.367, pp.4215-4225, 1905.

C. Chakraborty and C. Bose, Effect of size and position of gold nanocrystals embedded in gate oxide of SiO2/Si MOS structures, J. Adv. Dielectr, vol.6, issue.1, pp.1-5, 2016.

W. Y. Chang, Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals, Appl. Phys. Lett, vol.95, issue.4, p.42104, 2009.

M. Labalette, Fabrication of Planar Back End of Line Compatible HfO$_x$ Complementary Resistive Switches, IEEE Trans. Nanotechnol, vol.16, issue.5, pp.745-751, 2017.

O. Fruchier, Étude du comportement de la charge d'espace dans les structures MOS pour la microélectronique: Vers une analyse du champ électrique interne par la méthode de l'onde thermique, 2007.

M. Kanoun and &. Volatiles, , 2004.

Y. Tsai, Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices, Electrochem. Solid-State Lett, vol.14, issue.3, p.135, 2011.

D. Ielmini, Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling, Semicond. Sci. Technol, vol.31, issue.6, pp.1-25, 2016.

W. Kim, S. Park, Z. Zhang, and S. Wong, Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM, IEEE Trans. Electron Devices, vol.61, issue.6, pp.2158-2163, 2014.

C. Sire, S. Blonkowski, M. J. Gordon, and T. Baron, Statistics of electrical breakdown field in Hf O2 and Si O2 films from millimeter to nanometer length scales, Appl. Phys. Lett, vol.91, issue.24, 2007.

C. Sire, Propriétés électriques à l ' échelle nanométrique des diélectriques dans les structures MIM et MOS, 2009.

W. M. Haynes, D. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics

J. P. Coughlin, Contributions to the data on theoretical metallurgy XII , Heats and free energies of formation of inorganic oxides, U. S. Bur. Mines Bull, 1954.

T. Cabout, Optimisation technologique et caractérisation électrique de mémoires résistives OxRRAM pour applications basse consommation, 2014.

S. Blonkowski, Filamentary model of dielectric breakdown, J. Appl. Phys, vol.107, issue.8, 2010.

B. D. Salvo, Transport process in thin SiO2 films with an embedded 2-D array of Si nanocrystals, Microelectron. Reliab, vol.40, issue.4-5, pp.863-866, 2000.

T. H. Distefano and M. Shatzkes, DIELECTRIC INSTABILITY AND BREAKDOWN IN SiO2THIN FILMS, J Vac Sci Technol, vol.13, issue.1, pp.50-54, 1975.

R. Benabderrahmane, Étude des mécanismes de transport dans les diodes tunnels de type MIS associant ferromagnétiques et silicium, 2010.

E. Lim and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey, Electronics, vol.4, issue.3, pp.586-613, 2015.

G. Pananakakis, G. Ghibaudo, R. Kies, and C. Papadas, Temperature dependence of the Fowler-Nordheim current in metal-oxide-degenerate semiconductor structures, J. Appl. Phys, vol.78, issue.4, pp.2635-2641, 1995.

F. Chiu, A Review on Conduction Mechanisms in Dielectric Films, Adv. Mater. Sci. Eng, vol.2014, pp.1-18, 2014.

J. Wu, L. F. Register, and E. Rosenbaum, Trap-assisted tunneling current through ultra-thin oxide, Annu. Proc. -Reliab. Phys, pp.389-395, 1999.

O. Gallot-lavallée, Étude de la charge d'espace et des phénomènes luminescents comme précurseurs du viellissement électrique d'une résine époxy utilisée dans l'isolation haute tension, 2004.