, Description of the pseudo-ions in jellium (PIJ) model . . . 123 6.1.1 How the PIJ results depend on mass fraction, density and temperature

. .. Theoretical-framework, 128 6.2.1 Equations for DT/CH mixtures

, One-dimensional evaluation of the transport coefficients effects on the implosion

. .. Results,

.. .. Conclusion,

, Considering the small dimensions of a hot spot in ICF devices, ? 10 ? 100[µm], and the temperatures achieved, inertial confinement fusion compressions experiences a tremendous growth of the dynamic viscosity µ, as the temperature T increases

, Sudden diffusion effect in spherical mixing zones of plasma under compression

.. .. Perspective,

. .. Publications-&-conferences, , p.155

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, p.146, 1965.

P. Amendt, Bell-Plesset effects for an accelerating interface with contiguous density gradients, Physics of Plasmas, vol.13, issue.4, p.42702, 2006.

M. J. Andrews and D. B. Spalding, A simple experiment to investigate twodimensional mixing by Rayleigh-Taylor instability, Physics of Fluids A : Fluid Dynamics, vol.2, issue.6, pp.922-927, 1990.

P. Arnault, Modeling viscosity and diffusion of plasma for pure elements and multicomponent mixtures from weakly to strongly coupled regimes, High Energy Density Physics, vol.9, issue.4, pp.711-721, 2013.

S. Atzeni and J. Meyer-ter-vehn, The Physics of inertial fusion, vol.01, p.129, 2004.

S. Atzeni and J. Meyer-ter-vehn, The physics of inertial fusion : beam plasma interaction, hydrodynamics, hot dense matter, OUP Oxford, vol.125, 2004.

A. Baglin, Rotation and mixing in the outer layers of a stars. turbulent mixing due to the meridional circulation velocity field, Astron. & Astrophys, vol.19, pp.45-50, 1972.

A. Banerjee and M. J. Andrews, 3d simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing, International Journal of Heat and Mass Transfer, vol.52, pp.3906-3917, 2009.

G. K. Batchelor, The role of big eddies in homogeneous turbulence, Proc. Roy. Soc. London. Series A, Math. & Phys. Sci, vol.195, pp.513-532, 1043.

G. K. Batchelor, The Theory of Homogeneous Turbulence. Cambridge monographs on mechanics and applied mathematics, vol.83

G. K. Batchelor, V. M. Canuto, and J. R. Chasnov, Homogeneous buoyancygenerated turbulence, J. Fluid Mech, vol.235, p.95, 1992.

G. I. Bell, Taylor instability on cylinders and spheres in the small amplitude approximation, Los Alamos Scientific Laboratory, vol.35, 1951.

C. L. Bennett, D. Larson, J. Weiland, N. Jarosik, G. Hinshaw et al., Nine-year wilkinson microwave anisotropy probe (wmap) observations : final maps and results, The Astrophysical Journal Supplement Series, vol.208, issue.2, p.165, 2013.

R. Betti and O. A. Hurricane, Inertial-confinement fusion with lasers, Nature Physics, vol.12, issue.5, p.435, 2016.

G. Blaisdell, G. Coleman, and N. Mansour, Rapid distortion theory for compressible homogeneous turbulence under isotropic mean strain, Physics of Fluids, vol.8, issue.10, p.28, 1996.

G. A. Blaisdell, Numerical simulation of compressible homogeneous turbulence, p.28, 1991.

G. Boffetta and A. Mazzino, Incompressible Rayleigh-Taylor turbulence, Annual Review of Fluid Mechanics, vol.49, pp.119-143, 2017.

S. I. Braginskii, Rev. Plasma Phys, vol.1, p.205, 1995.

M. Brouillette, The Richtmyer-Meshkov instability, Annual Review of Fluid Mechanics, vol.34, issue.1, pp.445-468, 2002.

J. M. Budzinski, R. F. Benjamin, and J. W. Jacobs, Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer, Physics of Fluids, vol.6, issue.11, pp.3510-3512, 1994.

A. Burlot, Etude et modélisation de la turbulence homogène stratifiée instable, vol.10, 2015.

A. Burlot, B. Gréa, F. S. Godeferd, C. Cambon, and J. Griffond, Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence, J. Fluid Mech, vol.765, pp.17-44, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298325

A. Burlot, B. Gréa, F. S. Godeferd, C. Cambon, and O. Soulard, Large Reynolds number self-similar states of unstably stratified homogeneous turbulence, Physics of Fluids, vol.27, issue.6, p.71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298326

W. H. Cabot and A. W. Cook, Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae, Nat. Phys, vol.2, issue.8, pp.562-568, 2006.

C. Cambon, Y. Mao, and D. Jeandel, On the application of time dependent scaling to the modelling of turbulence undergoing compression, Eur. J. Mech. B-Fluids, vol.11, pp.683-703, 1992.

C. Cambon, G. N. Coleman, and N. N. Mansour, Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite Mach number, Journal of Fluid Mechanics, vol.257, p.82, 1993.

I. H. Campbell and J. S. Turner, Turbulent mixing between fluids with different viscosities, Nature, vol.313, issue.5997, p.18, 1985.

A. Campos and B. E. Morgan, Self-consistent feedback mechanism for the sudden viscous dissipation of finite-Mach-number compressing turbulence, Physical Review E, vol.99, issue.1, p.13107, 2019.

C. Canuto, M. Y. Hussaini, A. Quarteroni, and A. Thomas, Spectral methods in fluid dynamics, vol.46, 2012.

V. P. Carey and J. C. Mollendorf, Variable viscosity effects in several natural convection flows, International Journal of Heat and Mass Transfer, vol.23, issue.1, p.18, 1980.

S. Chandrasekhar, The character of the equilibrium of an incompressible fluid sphere of variable density and viscosity subject to radial acceleration, The Quarterly Journal of Mechanics and Applied Mathematics, vol.8, issue.1, pp.1-21, 1955.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics, vol.11

J. J. Charonko and K. Prestridge, Variable-density mixing in turbulent jets with coflow, Journal of Fluid Mechanics, vol.825, p.22, 2017.

M. Chertkov, V. Lebedev, and N. Vladimirova, Reactive Rayleigh-Taylor turbulence, Journal of Fluid Mechanics, vol.633, p.11, 2009.

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of computation, vol.22, issue.104, p.49, 1968.

U. Christensen and H. Harder, 3-d convection with variable viscosity, Geophysical Journal International, vol.104, issue.1, p.18, 1991.

D. S. Clark, M. M. Marinak, C. R. Weber, D. C. Eder, S. W. Haan et al., Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the national ignition campaign, Physics of Plasmas, vol.22, issue.2, p.22703, 2015.

D. S. Clark, C. Weber, J. L. Milovich, J. D. Salmonson, A. L. Kritcher et al., Three-dimensional simulations of low foot and high foot implosion experiments on the national ignition facility, Physics of Plasmas, vol.23, issue.5, p.16, 2016.

G. N. Coleman and N. N. Mansour, Simulation and modeling of homogeneous compressible turbulence under isotropic mean compression, Turbulent Shear Flows 8, p.28, 1993.

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, vol.19, issue.90, pp.297-301, 1965.

L. Danaila, L. Voivenel, and E. Varea, Self-similarity criteria in anisotropic flows with viscosity stratification, Physics of Fluids, vol.29, issue.2, p.19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611146

P. Danckwerts, The definition and measurement of some characteristics of mixtures, Applied Scientific Research, Section A, vol.3, issue.4, p.141, 1952.

S. Davidovits and N. J. Fisch, Sudden viscous dissipation of compressing turbulence, Phys. Rev. Lett, vol.116, p.105004, 2016.

S. Davidovits and N. J. Fisch, Compressing turbulence and sudden viscous dissipation with compression-dependent ionization state, Physical Review E, vol.94, issue.5, p.53206, 2016.

P. A. Davidson, Turbulence : an introduction for scientists and engineers, vol.98, 2015.

B. and D. Pierro, Etude de l'évolution spatio-temporelle d'un jet tournant tridimensionnel à masse volumique variable, p.51, 2012.

B. and D. Pierro, On a preconditionment for the spectral solution of incompressible variable density flows, vol.51, p.50, 2017.

B. , D. Pierro, and M. Abid, A projection method for the spectral solution of nonhomogeneous and incompressible navier-stokes equations, International Journal for Numerical Methods in Fluids, vol.71, issue.8, p.51, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00701989

G. Dimonte, D. Youngs, A. Dimits, S. Weber, M. Marinak et al., A comparative study of the turbulent rayleigh-taylor instability using high-resolution three-dimensional numerical simulations : the alpha-group collaboration, Physics of Fluids, vol.16, issue.5, pp.1668-1693, 2004.

P. E. Dimotakis, Turbulent mixing, Annu. Rev. Fluid Mech, vol.37, pp.329-356, 2005.

P. Durbin and O. Zeman, Rapid distortion theory for homogeneous compressed turbulence with application to modelling, Journal of Fluid Mechanics, vol.242, p.28, 1992.

T. Ebisuzaki, T. Shigeyama, and K. Nomoto, Rayleigh-Taylor instability and mixing in sn 1987a, The Astrophysical Journal, vol.344, pp.65-68, 1989.

C. Eckart, An analysis of the stirring and mixing processes in compressible fluids, J Mar Res, vol.7, issue.3, pp.265-275, 1948.

L. Erwin, Theory of laminar mixing, Polymer Engineering & Science, vol.18, issue.13, pp.1044-1048, 1978.

M. Faraday, On the forms and states of fluids on vibrating elastic surfaces, Phil. Trans. R. Soc. Lond, vol.121, pp.319-340, 1831.

H. J. Fernando, Turbulent mixing in stratified fluids, Annual review of fluid mechanics, vol.23, issue.1, pp.455-493, 1991.

J. H. Ferziger and M. Peric, Computational methods for fluid dynamics, vol.54, 2012.

M. Frigo and S. G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, vol.93, issue.2, pp.216-231, 2005.

M. Gauding, L. Danaila, and E. Varea, One-point and two-point statistics of homogeneous isotropic decaying turbulence with variable viscosity, International Journal of Heat and Fluid Flow, vol.72, p.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02418829

W. K. George, The decay of homogeneous isotropic turbulence, Physics of Fluids A : Fluid Dynamics, vol.4, issue.7, pp.1492-1509, 1992.

S. Gerashchenko and K. Prestridge, Density and velocity statistics in variable density turbulent mixing, Journal of Turbulence, vol.16, issue.11, p.22, 2015.

. Bibliographie,

M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne et al., The RAGE radiation-hydrodynamic code, Computational Science & Discovery, vol.1, issue.1, p.14, 2008.

S. Gottlieb, C. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM review, vol.43, issue.1, p.48, 2001.

R. Govindarajan and K. C. Sahu, Instabilities in viscosity-stratified flow

, Annual Review of Fluid Mechanics, vol.46, issue.1, p.18, 2014.

B. Gréa, The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh-Taylor instability, Phys. Fluids, vol.25, issue.1, p.15118, 2013.

B. Gréa and A. E. Adou, What is the final size of turbulent mixing zones driven by the faraday instability ?, Journal of Fluid Mechanics, vol.837, pp.293-319, 2018.

B. Gréa, J. Griffond, and A. Burlot, The effects of variable viscosity on the decay of homogeneous isotropic turbulence, Phys. Fluids, vol.26, issue.3, p.35104, 2014.

B. Gréa, A. Burlot, J. Griffond, and A. Llor, Challenging mix models on transients to self-similarity of unstably stratified homogeneous turbulence, ASME. J. Fluids Eng, vol.138, p.12, 2016.

B. Gréa, A. Burlot, F. Godeferd, O. Soulard, J. Griffond et al., Dynamics and structure of unstably stratified homogeneous turbulence, Journal of Turbulence, vol.17, pp.651-663, 2016.

J. Griffond, B. Gréa, and S. O. , Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling, J. Fluids Eng, vol.136, p.31, 2014.

J. Griffond, B. Gréa, and O. Soulard, Numerical investigation of self-similar unstably stratified homogeneous turbulence, J. Turb, vol.16, issue.2, p.31, 2015.

J. Griffond, B. Gréa, and O. Soulard, Numerical investigation of self-similar unstably stratified homogeneous turbulence, Journal of Turbulence, vol.16, issue.2, pp.167-183, 2015.

F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit large eddy simulation : computing turbulent fluid dynamics, vol.102, 2007.

H. Groemer, Geometric applications of Fourier series and spherical harmonics, p.146, 1996.

B. M. Haines, F. F. Grinstein, and J. R. Fincke, Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance, Physical Review E, vol.89, issue.5, p.53302, 2014.

B. M. Haines, E. L. Vold, K. Molvig, C. Aldrich, and R. Rauenzahn, The effects of plasma diffusion and viscosity on turbulent instability growth, Physics of Plasmas, vol.21, issue.9, p.92306, 2014.

B. M. Haines, G. P. Grim, J. R. Fincke, R. C. Shah, C. J. Forrest et al., Detailed high-resolution three-dimensional simulations of omega separated reactants inertial confinement fusion experiments, Physics of Plasmas, vol.23, issue.7, p.122, 2016.

P. E. Hamlington and M. Ihme, Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows. Flow, turbulence and combustion, vol.93, pp.93-124, 2014.

B. A. Hammel, S. W. Haan, D. S. Clark, M. J. Edwards, S. H. Langer et al., High-mode Rayleigh-Taylor growth in nif ignition capsules, High energy density physics, vol.6, p.122, 2010.

N. M. Hoffman, G. B. Zimmerman, K. Molvig, H. G. Rinderknecht, M. J. Rosenberg et al., Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions, Physics of Plasmas, vol.22, issue.5, p.14, 2015.

J. C. Hunt and D. J. Carruthers, Rapid distortion theory and the problems of turbulence, J. Fluid Mech, vol.212, p.27, 1990.

H. E. Huppert and J. S. Turner, Double-diffusive convection, Journal of Fluid Mechanics, vol.106, pp.299-329, 1981.

I. V. Igumenshchev, A. B. Zylstra, C. K. Li, P. M. Nilson, V. N. Goncharov et al., Self-generated magnetic fields in direct-drive implosion experiments, Physics of Plasmas, vol.21, issue.6, p.15, 2014.

C. Jause-labert, Simulation numérique d'écoulements turbulents en rotation, confinement et forçage à l'aide d'une méthode de pénalisation, p.68, 2012.

. Bibliographie,

D. D. Joseph and Y. Y. Renardy, Fluid dynamics of two miscible liquids with diffusion and gradient stresses, Fundamentals of Two-Fluid Dynamics, p.21, 1993.

D. D. Joseph, R. Bai, K. P. Chen, and Y. Y. Renardy, Core-annular flows, Annual Review of Fluid Mechanics, vol.29, issue.1, p.18, 1997.

D. S. Reddy and K. Sinha, Hypersonic turbulent flow simulation of fire ii reentry vehicle afterbody, Journal of Spacecraft and Rockets, vol.46, issue.4, p.18, 2009.

G. Kagan and X. Tang, Thermo-diffusion in inertially confined plasmas, Physics Letters A, vol.378, issue.21, p.142, 2014.

H. J. Kull, Theory of the Rayleigh-Taylor instability, Physics Reports, vol.206, issue.5, pp.197-325, 1991.

C. C. Lai, J. J. Charonko, and K. Prestridge, A Kármán-Howarth-Monin equation for variable-density turbulence, Journal of Fluid Mechanics, vol.843, p.22, 2018.

K. G. Lamb, Internal wave breaking and dissipation mechanisms on the continental slope/shelf, Annual Review of Fluid Mechanics, vol.46, pp.231-254, 2014.

G. C. Layek, S. Mukhopadhyay, and R. S. Gorla, Unsteady viscous flow with variable viscosity in a vascular tube with an overlapping constriction, International journal of engineering science, vol.47, issue.5-6, p.18, 2009.

K. Lee, S. S. Girimaji, and J. Kerimo, Validity of Taylor' s dissipation-viscosity independence postulate in variable-viscosity turbulent fluid mixtures, Physical review letters, vol.101, issue.7, p.19, 2008.

M. Lesieur, Turbulence in Fluids. Fluid Mechanics and Its Applications Series, vol.9781402064357, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00261553

M. Lesieur and S. Ossia, 3D isotropic turbulence at very high Reynolds numbers : EDQNM study, J. Turb, vol.1, p.70, 2000.

J. M. Lighthill, Waves in fluids, 2001.

H. Lin, B. D. Storey, and A. J. Szeri, Rayleigh-Taylor instability of violently collapsing bubbles, Physics of Fluids, vol.14, issue.8, p.36, 2002.

J. , Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Physics of Plasmas, vol.2, issue.11, p.13, 1995.

D. Livescu, Compressibility effects on the Rayleigh-Taylor instability growth between immiscible fluids, Physics of fluids, vol.16, issue.1, pp.118-127, 2004.

D. Livescu and J. R. Ristorcelli, Buoyancy-driven variable-density turbulence, J. Fluid Mech, vol.591, pp.43-71, 2007.

D. Livescu and J. R. Ristorcelli, Variable-density mixing in buoyancy-driven turbulence, Journal of Fluid Mechanics, vol.605, pp.145-180, 2008.

D. Livescu, J. Ristorcelli, R. Gore, S. Dean, W. Cabot et al., High-reynolds number Rayleigh-Taylor turbulence, Journal of Turbulence, vol.9, issue.10, p.13, 2009.

D. Livescu, J. R. Ristorcelli, M. R. Petersen, and R. A. Gore, New phenomena in variable-density rayleigh-taylor turbulence, Physica Scripta, issue.T142, p.22, 2010.

M. Lombardini, D. I. Pullin, and D. I. Meiron, Transition to turbulence in shockdriven mixing : a mach number study, Journal of Fluid Mechanics, vol.690, pp.203-226, 2012.

M. Lombardini, D. I. Pullin, and D. I. Meiron, Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth, Journal of Fluid Mechanics, vol.748, p.36, 2014.

M. Lombardini, D. I. Pullin, and D. I. Meiron, Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics, Journal of Fluid Mechanics, vol.748, p.146, 2014.

T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key et al., The role of hot spot mix in the low-foot and high-foot implosions on the NIF, Physics of Plasmas, vol.24, issue.5, p.122, 2017.

A. G. Macphee, D. T. Casey, D. S. Clark, S. Felker, J. E. Field et al., X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube, Physical Review E, vol.95, issue.3, p.122, 2017.

. Bibliographie,

D. Makinde, W. A. Khan, and J. R. Culham, Mhd variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, International Journal of Heat and Mass Transfer, vol.93, p.18, 2016.

M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro et al., Three-dimensional hydra simulations of national ignition facility targets, Physics of Plasmas, vol.8, issue.5, pp.2275-2280, 2001.

M. M. Marinak, G. D. Kerbel, J. M. Koning, M. V. Patel, S. M. Sepke et al., Advances in hydra and its applications to simulations of inertial confinement fusion targets, EPJ Web of Conferences, vol.59, p.14, 2013.

A. Mashayek, H. Salehipour, D. Bouffard, C. P. Caulfield, R. Ferrari et al., Efficiency of turbulent mixing in the abyssal ocean circulation, Geophysical Research Letters, vol.44, issue.12, pp.6296-6306, 2017.

J. Mathew, H. Foysi, and R. Friedrich, A new approach to LES based on explicit filtering, International journal of heat and fluid flow, vol.27, issue.4, pp.594-602, 2006.

M. Meldi and P. Sagaut, On non-self-similar regimes in homogeneous isotropic turbulence decay, J. Fluid Mech, vol.711, pp.364-393, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01298925

E. E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dynamics, vol.4, issue.5, pp.101-104, 1969.

K. O. Mikaelian, Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells, Physical Review A, vol.42, issue.6, p.3400, 1990.

K. O. Mikaelian, Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Physical Review E, vol.47, issue.1, p.375, 1993.

P. L. Miller, W. H. Cabot, and A. W. Cook, Which way is up ? A fluid dynamics riddle, Physics of Fluids, vol.17, issue.9, p.91110, 2005.

K. Molvig, N. M. Hoffman, B. J. Albright, E. M. Nelson, and R. B. Webster, Knudsen layer reduction of fusion reactivity, Physical review letters, vol.109, issue.9, p.15, 2012.

K. Molvig, A. N. Simakov, and E. L. Vold, Classical transport equations for burning gas-metal plasmas, Physics of Plasmas, vol.21, issue.9, p.142, 2014.

A. S. Monin and A. M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, vol.151, issue.163, p.187, 1954.

V. Mons, J. Chassaing, T. Gomez, and P. Sagaut, Is isotropic turbulence decay governed by asymptotic behavior of large scales ? An eddy-damped quasi-normal Markovian-based data assimilation study, Physics of Fluids, vol.26, issue.11, p.115105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01298950

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations ?, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.3, p.51, 1992.

A. W. Nienow, M. F. Edwards, and N. Harnby, Mixing in the process industries, 1997.

T. Oggian, D. Drikakis, D. L. Youngs, and R. J. Williams, Computing multimode shock-induced compressible turbulent mixing at late times, Journal of Fluid Mechanics, vol.779, pp.411-431, 2015.

Y. Ogura, A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech, vol.16, p.163, 1963.

G. Orlicz, S. Balasubramanian, and K. Prestridge, Incident shock mach number effects on richtmyer-meshkov mixing in a heavy gas layer, Physics of Fluids, vol.25, issue.11, p.114101, 2013.

S. A. Orszag, Lectures on the statistical theory of turbulence, Les Houches Summer School 1973, vol.163, pp.273-374, 1977.

S. A. Orszag and G. S. Patterson, Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett, vol.28, pp.76-79, 1972.

J. M. Ottino, Mixing, Chaotic Advection, and Turbulence, Annual Review of Fluid Mechanics, vol.22, issue.1, pp.207-254, 1990.

J. M. Ottino and R. Chella, Laminar mixing of polymeric liquids ; a brief review and recent theoretical developments, Polymer Engineering & Science, vol.23, issue.7, pp.357-379, 1983.

A. Pantokratoras, Study of mhd boundary layer flow over a heated stretching sheet with variable viscosity : a numerical reinvestigation, International Journal of Heat and Mass Transfer, vol.51, issue.1-2, p.18, 2008.

B. Parent, J. P. Sislian, and J. Schumacher, Numerical investigation of the turbulent mixing performance of a cantilevered ramp injector, AIAA journal, vol.40, issue.8, pp.1559-1566, 2002.

D. Pekurovsky, P3dfft : A framework for parallel computations of Fourier transforms in three dimensions, SIAM Journal on Scientific Computing, vol.34, issue.4, p.47, 2012.

A. Piel, Plasma physics : an introduction to laboratory, space, and fusion plasmas, vol.124, 2017.

R. W. Pitz and J. W. Daily, Combustion in a turbulent mixing layer formed at a rearward-facing step, AIAA journal, vol.21, issue.11, pp.1565-1570, 1983.

M. Plesset, On the stability of fluid flows with spherical symmetry, Journal of Applied Physics, vol.25, issue.1, pp.96-98, 1954.

K. L. Polzin, J. M. Toole, J. R. Ledwell, and R. W. Schmitt, Spatial variability of turbulent mixing in the abyssal ocean, Science, vol.276, issue.5309, pp.93-96, 1997.

S. B. Pope, Turbulent Flows, vol.9780521598866, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00712179

O. Poujade and M. Peybernes, Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach, Phys. Rev. E, vol.81, p.97, 2010.

A. Pouquet, M. Lesieur, J. C. André, and C. Basdevant, Evolution of high Reynolds number two-dimensional turbulence, J. Fluid Mech, vol.72, p.163

K. Prestridge, Experimental adventures in variable-density mixing, Physical Review Fluids, vol.3, issue.11, p.110501, 2018.

A. Prosperetti, Viscous effects on perturbed spherical flows, Quarterly of Applied Mathematics, vol.34, issue.4, p.36, 1977.

P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, Journal of Fluid Mechanics, vol.536, pp.285-319, 2005.

P. Ramaprabhu, V. Karkhanis, and A. G. Lawrie, The rayleigh-taylor instability driven by an accel-decel-accel profile, Physics of Fluids, vol.25, issue.11, p.115104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01725169

P. Rao, C. P. Caulfield, and J. D. Gibbon, Nonlinear effects in buoyancy-driven variable-density turbulence, Journal of Fluid Mechanics, vol.810, p.22, 2017.

J. W. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proceedings of the London Mathematical Society, issue.1, pp.170-177

R. D. Reitz, Use of detailed chemical kinetics to study hcci engine combustion with consideration of turbulent mixing effects, J. Eng. Gas Turbines Power, vol.124, issue.3, pp.702-707, 2002.

R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Communications on Pure and Applied Mathematics, vol.13, issue.2, pp.297-319, 1960.

H. G. Rinderknecht, H. Sio, C. K. Li, A. B. Zylstra, M. J. Rosenberg et al., First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions, Phys. Rev. Lett, vol.112, p.135001, 2014.

H. G. Rinderknecht, H. Sio, C. K. Li, A. B. Zylstra, M. J. Rosenberg et al., First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions, Physical review letters, vol.112, issue.13, p.15, 2014.

R. S. Rogallo, Numerical experiments in homogeneous turbulence, NASA, vol.157, 1981.

Y. Saad and M. H. Schultz, Gmres : A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, vol.7, issue.3, p.51, 1986.

P. Sagaut and C. Cambon, Homogeneous Turbulence Dynamics, ISBN 9780521855488. (Cited on pages 28, vol.73, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01706709

H. Sakagami and K. Nishihara, Three-dimensional Rayleigh-Taylor instability of spherical systems, Physical Review Letters, vol.65, issue.4, p.36, 1990.

. Bibliographie,

D. L. Sandoval, The dynamics of variable-density turbulence, 1995.

M. M. Scase, K. A. Baldwin, and R. J. Hill, Rotating rayleigh-taylor instability, Physical Review Fluids, vol.2, issue.2, p.11, 2017.

D. H. Sharp, Overview of Rayleigh-Taylor instability, 1983.

J. D. Slavin, J. M. Shull, and M. C. Begelman, Turbulent mixing layers in the interstellar medium of galaxies, The Astrophysical Journal, vol.407, pp.83-99, 1993.

J. P. Snyder, Map projections-A working manual, vol.1395, 1987.

O. Soulard, J. Griffond, and B. Gréa, Large-scale analysis of self-similar unstably stratified homogeneous turbulence, Phys. Fluids, vol.26, issue.015110, p.97, 2014.

O. Soulard, J. Griffond, and B. Gréa, Large-scale analysis of unconfined selfsimilar Rayleigh-Taylor turbulence, Physics of Fluids, vol.27, issue.9, p.95103, 2015.

O. Soulard, F. Guillois, J. Griffond, V. Sabelnikov, and S. Simoëns, Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number, Physical Review Fluids, vol.3, issue.10, p.104603, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02085883

O. Soulard, J. Griffond, B. Gréa, and G. Viciconte, Permanence of large eddies in variable-density homogeneous turbulence, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02096930

J. Stoer and R. Bulirsch, Introduction to numerical analysis, vol.12, 2013.

R. Tailleux, On the energetics of stratified turbulent mixing, irreversible thermodynamics, boussinesq models and the ocean heat engine controversy, Journal of Fluid Mechanics, vol.638, pp.339-382, 2009.

B. Talbot, Mélange et dynamique de la turbulence en écoulements libres à viscosité variable, vol.19, 2009.

G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I. Proceedings of the Royal Society of London. Series A, vol.201, pp.192-196, 1065.

H. Tennekes and J. L. Lumley, A first course in turbulence, 1972.

B. Thornber, D. Drikakis, D. Youngs, and R. Williams, The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability, Journal of Fluid Mechanics, vol.654, pp.99-139, 2010.

B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi et al., Late-time growth rate, mixing, and anisotropy in the multimode narrowband richtmyer-meshkov instability : The ?-group collaboration, Physics of Fluids, vol.29, issue.10, p.105107, 2017.

B. J. Thornber and D. Drikakis, Numerical dissipation of upwind schemes in low mach flow, International Journal for Numerical Methods in Fluids, vol.56, issue.8, p.132, 2008.

S. T. Thoroddsen, C. W. Van-atta, and J. S. Yampolsky, Experiments on homogeneous turbulence in an unstably stratified fluid, Phys. Fluids, vol.10, issue.12, p.96, 1998.

C. Ticknor, J. D. Kress, L. A. Collins, J. Clérouin, P. Arnault et al., Transport properties of an asymmetric mixture in the dense plasma regime, Physical Review E, vol.93, issue.6, p.63208, 2016.

J. S. Turner and I. H. Campbell, Convection and mixing in magma chambers, Earth-Science Reviews, vol.23, issue.4, p.18, 1986.

G. Viciconte, B. Gréa, and F. S. Godeferd, Self-similar regimes of turbulence in weakly coupled plasmas under compression, Physical Review E, vol.97, issue.2, p.23201, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02084835

N. Vladimirova and M. Chertkov, Self-similarity and universality in rayleigh-taylor, boussinesq turbulence, Phys. Fluids, vol.21, issue.1, p.96, 2009.

L. Voivenel, E. Varea, L. Danaila, B. Renou, and M. Cazalens, Variable viscosity jets : Entrainment and mixing process, Whither Turbulence and Big Data in the 21st Century ?, vol.20, pp.147-162, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02420253

E. L. Vold, A. S. Joglekar, M. I. Ortega, R. Moll, D. Fenn et al., Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations, Physics of Plasmas, vol.22, issue.11, p.112708, 2015.

. Bibliographie,

J. Walsh, K. Chittenden, N. Mcglinchey, B. Niasse, and . Appelbe, Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the national ignition facility, Physical Review Letters, vol.118, issue.15, p.15, 2017.

C. R. Weber, D. S. Clark, A. W. Cook, L. E. Busby, and H. F. Robey, Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation, Phys. Rev. E, vol.89, p.53106, 2014.

C. R. Weber, N. S. Haehn, J. G. Oakley, D. A. Rothamer, and R. Bonazza, An experimental investigation of the turbulent mixing transition in the Richtmyer-Meshkov instability, Journal of Fluid Mechanics, vol.748, pp.457-487, 2014.

C. R. Weber, D. T. Casey, D. S. Clark, B. A. Hammel, A. Macphee et al., Improving ICF implosion performance with alternative capsule supports, Physics of Plasmas, vol.24, issue.5, p.56302, 2017.

A. J. White, L. A. Collins, J. D. Kress, C. Ticknor, J. Clérouin et al., Correlation and transport properties for mixtures at constant pressure and temperature, Phys. Rev. E, vol.95, p.63202, 2017.

J. P. Wilkinson and J. W. Jacobs, Experimental study of the single-mode threedimensional Rayleigh-Taylor instability, Physics of fluids, vol.19, issue.12, p.124102, 2007.

C. Wu, J. H. Ferziger, and D. R. Chapman, Simulation and modeling of homogeneous, compressed turbulence

D. Youngs, Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physics of Fluids A : Fluid Dynamics, vol.3, issue.5, p.140, 1991.

D. Youngs, Application of MILES to Rayleigh-Taylor and Richtmyer-Meshkov mixing, 16th AIAA Computational Fluid Dynamics Conference, vol.9, p.4102, 2003.

D. L. Youngs, Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D : Nonlinear Phenomena, vol.12, issue.1-3, pp.32-44, 1984.

D. L. Youngs, The density ratio dependence of self-similar Rayleigh-Taylor mixing, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.371, 2003.

D. L. Youngs and R. J. Williams, Turbulent mixing in spherical implosions, International Journal for Numerical Methods in Fluids, vol.56, issue.8, p.36, 2008.

Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Physics Reports, vol.720, pp.1-136, 2017.

Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Physics Reports, vol.723, p.11, 2017.

A. Zylstra, N. Hoffman, H. Herrmann, M. Schmitt, Y. Kim et al., Diffusion-dominated mixing in moderate convergence implosions, Physical Review E, vol.97, issue.6, p.61201, 2018.