, Concernant l'éventuelle protection croisée induite par nos peptides, même si ces derniers sont conservés parmi les espèces de Leishmania, il est important d'élargir notre analyse à des individus immuns à des espèces de Leishmania autres que L. major

, Il serait également utile d'étudier le pouvoir immunogène des peptides dans des modèles expérimentaux animaux comme les souris transgéniques exprimant les allèles HLA et de déterminer ainsi la voie d'administration, la dose optimale et l'innocuité des peptides

, Une formulation idéale des peptides incluant leur conjugaison à des adjuvants devrait aussi être envisagée afin d'optimiser la réponse immunitaire

A. L. Ackerman, C. Kyritsis, R. Tampe, and P. Cresswell, Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens, Proc Natl Acad Sci U S A, vol.100, issue.22, pp.12889-12894, 2003.

T. Aebischer, Proteome Data Sets: A Comprehensive Resource for Vaccine Development to Target Visceral Leishmaniasis, Front Immunol, vol.5, p.260, 2014.

L. Afonso, V. M. Borges, H. Cruz, F. L. Ribeiro-gomes, G. A. Dosreis et al., Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis, J Leukoc Biol, vol.84, issue.2, pp.389-396, 2008.

M. Agallou, E. Athanasiou, O. Koutsoni, E. Dotsika, and E. Karagouni, Experimental Validation of Multi-Epitope Peptides Including Promising MHC Class I-and II-Restricted Epitopes of Four Known Leishmania infantum Proteins, Front Immunol, vol.5, p.268, 2014.

M. Agallou, M. Margaroni, and E. Karagouni, Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP-11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis, Vaccine, vol.29, issue.31, pp.5053-5064, 2011.

S. Ahluwalia, S. D. Lawn, J. Kanagalingam, H. Grant, and D. N. Lockwood, Mucocutaneous leishmaniasis: an imported infection among travellers to central and South America, BMJ, vol.329, issue.7470, pp.842-844, 2004.

W. Aissi, K. Ben, Z. Hellel, I. Habboul, . Ben et al., Epidemiological, clinical and biological features of infantile visceral leishmaniasis at Kairouan hospital (Tunisia): about 240 cases, Bull Soc Pathol Exot, vol.108, issue.4, pp.265-271, 2015.

S. Ajdary, M. H. Alimohammadian, M. B. Eslami, K. Kemp, and A. Kharazmi, Comparison of the immune profile of nonhealing cutaneous Leishmaniasis patients with those with active lesions and those who have recovered from infection, Infect Immun, vol.68, issue.4, pp.1760-1764, 2000.

N. S. Akopyants, N. Kimblin, N. Secundino, R. Patrick, N. Peters et al., Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector, Science, vol.324, issue.5924, pp.265-268, 2009.

C. Alanio, F. Lemaitre, H. K. Law, M. Hasan, and M. L. Albert, Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies, Blood, vol.115, issue.18, pp.3718-3725, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01402100

J. Alexander and F. Brombacher, T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant?, Front Immunol, vol.3, p.80, 2012.

J. Alvar, I. D. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PLoS One, vol.7, issue.5, p.35671, 2012.

M. V. Alves-silva, D. Nico, P. M. De-luca, and C. , The F1F3, 2019.

, Recombinant Chimera of Leishmania donovani-Nucleoside Hydrolase (NH36) and Its Epitopes Induce Cross-Protection Against Leishmania (V.) braziliensis Infection in Mice, Front Immunol, vol.10, p.724

M. V. Alves-silva, D. Nico, A. Morrot, M. Palatnik, and C. B. Palatnik-de-sousa, A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection, Front Immunol, vol.8, p.100, 2017.

C. R. Alves, L. C. Pontes-de-carvalho, A. L. Souza, and S. G. De-simone, A strategy for the identification of T-cell epitopes on Leishmania cysteine proteinases, Cytobios, vol.104, issue.405, pp.33-41, 2001.

V. S. Amato, F. F. Tuon, H. A. Bacha, V. A. Neto, and A. C. Nicodemo, Mucosal leishmaniasis . Current scenario and prospects for treatment, Acta Trop, vol.105, issue.1, pp.1-9, 2008.

A. Amit, M. R. Dikhit, V. Mahantesh, R. Chaudhary, A. K. Singh et al.,

K. Das, V. Pandey, S. Ali, G. C. Narayan, P. Sahoo et al., Immunomodulation mediated through Leishmania donovani protein disulfide isomerase by eliciting CD8+ T-cell in cured visceral leishmaniasis subjects and identification of its possible HLA class-1 restricted T-cell epitopes, J Biomol Struct Dyn, vol.35, issue.1, pp.128-140, 2017.

C. F. Anderson, M. Oukka, V. J. Kuchroo, and D. Sacks, CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis, J Exp Med, vol.204, issue.2, pp.285-297, 2007.

M. Andrieu, E. Loing, J. F. Desoutter, F. Connan, J. Choppin et al., Endocytosis of an HIV-derived lipopeptide into human dendritic cells followed by class I-restricted CD8(+) T lymphocyte activation, Eur J Immunol, vol.30, issue.11, pp.3256-3265, 2000.

K. Aoun, F. Amri, E. Chouihi, N. Haouas, K. Bedoui et al., , 2008.

L. Major and L. Killicki-in-tunisia, results and analysis of the identification of 226 human and canine isolates, Bull Soc Pathol Exot, vol.101, issue.4, pp.323-328

K. Aoun and A. Bouratbine, Cutaneous leishmaniasis in North Africa: a review, Parasite, vol.21, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01098542

K. Aoun, A. Bouratbine, Z. Harrat, I. Guizani, M. Mokni et al., Epidemiologic and parasitologic data concerning sporadic cutaneous leishmaniasis in northern Tunisia, Bull Soc Pathol Exot, vol.93, issue.2, pp.101-103, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-01983309

K. Aoun, F. Jeddi, F. Amri, J. Ghrab, and A. Bouratbine, Med Mal Infect, vol.39, issue.10, pp.775-779, 2009.

V. Appay, J. J. Zaunders, L. Papagno, J. Sutton, A. Jaramillo et al., Characterization of CD4(+) CTLs ex vivo, J Immunol, vol.168, issue.11, pp.5954-5958, 2002.

R. X. Armijos, M. M. Weigel, H. Aviles, R. Maldonado, and J. Racines, Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: safety, immunogenicity, and efficacy during the first 12 months of follow-up, J Infect Dis, vol.177, issue.5, pp.1352-1357, 1998.

R. X. Armijos, M. M. Weigel, L. Romero, V. Garcia, and J. Salazar, Field trial of a vaccine against new world cutaneous leishmaniasis in an at-risk child population: how long does protection last?, J Infect Dis, vol.187, issue.12, pp.1959-1961, 2003.

N. Aslan, C. Yurdaydin, J. Wiegand, T. Greten, A. Ciner et al.,

. Wedemeyer, Cytotoxic CD4 T cells in viral hepatitis, J Viral Hepat, vol.13, issue.8, pp.505-514, 2006.

A. Baas, X. Gao, and G. Chelvanayagam, Peptide binding motifs and specificities for HLA-DQ molecules, Immunogenetics, vol.50, issue.1-2, pp.8-15, 1999.

O. Bacellar, C. Brodskyn, J. Guerreiro, M. Barral-netto, C. H. Costa et al., Interleukin-12 restores interferon-gamma production and cytotoxic responses in visceral leishmaniasis, J Infect Dis, vol.173, issue.6, pp.1515-1518, 1996.

O. Bacellar, H. Lessa, A. Schriefer, P. Machado, A. Ribeiro-de-jesus et al., Up-regulation of Th1-type responses in mucosal leishmaniasis patients, Infect Immun, vol.70, issue.12, pp.6734-6740, 2002.

R. K. Baharia, R. Tandon, A. A. Sahasrabuddhe, S. Sundar, and A. Dube, , 2014.

, Nucleosomal histone proteins of L. donovani: a combination of recombinant H2A, vol.2, p.3

, H4 proteins were highly immunogenic and offered optimum prophylactic efficacy against Leishmania challenge in hamsters, PLoS One, vol.9, issue.6, p.97911

S. Bahl, S. Parashar, H. Malhotra, M. Raje, and A. Mukhopadhyay, Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania, J Biol Chem, vol.290, issue.50, pp.29993-30005, 2015.

W. Baier, N. Masihi, M. Huber, P. Hoffmann, and W. G. Bessler, Lipopeptides as immunoadjuvants and immunostimulants in mucosal immunization, Immunobiology, vol.201, issue.3-4, pp.391-405, 2000.

R. N. Bamford, A. J. Grant, J. D. Burton, C. Peters, G. Kurys et al., The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells, Proc Natl Acad Sci U S A, vol.91, issue.11, pp.4940-4944, 1994.

A. L. Banuls, M. Hide, and F. Prugnolle, Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans, Adv Parasitol, vol.64, pp.1-109, 2007.

M. L. Barbosa-santos, D. Nico, F. A. De-oliveira, A. S. Barreto, I. Palatnik-de-sousa et al., Leishmania donovani Nucleoside Hydrolase (NH36) Domains Induce T-Cell Cytokine Responses in Human Visceral Leishmaniasis, vol.8, p.227, 2017.

M. Barral-netto, A. Barral, C. Brodskyn, E. M. Carvalho, and S. G. Reed, Cytotoxicity in human mucosal and cutaneous leishmaniasis, Parasite Immunol, vol.17, issue.1, pp.21-28, 1995.

S. Bartlett, M. Skwarczynski, and I. Toth, Lipids as activators of innate immunity in peptide vaccine delivery, Curr Med Chem, 2018.

R. Basu, S. Bhaumik, J. M. Basu, K. Naskar, T. De et al., Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1-and Th2-like responses in visceral leishmaniasis, J Immunol, vol.174, issue.11, pp.7160-7171, 2005.

R. Basu, S. Roy, and P. Walden, HLA class I-restricted T cell epitopes of the kinetoplastid membrane protein-11 presented by Leishmania donovani-infected human macrophages, J Infect Dis, vol.195, issue.9, pp.1373-1380, 2007.

P. A. Bates, Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies, Int J Parasitol, vol.37, issue.10, pp.1097-1106, 2007.

. Références,

J. K. Beetham, J. E. Donelson, and R. R. Dahlin, Surface glycoprotein PSA (GP46) expression during short-and long-term culture of Leishmania chagasi, Mol Biochem Parasitol, vol.131, issue.2, pp.109-117, 2003.

Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity, Nature, vol.420, issue.6915, pp.502-507, 2002.

Y. Belkaid, E. V. Stebut, S. Mendez, R. Lira, E. Caler et al., CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major, J Immunol, vol.168, issue.8, pp.3992-4000, 2002.

K. Ben-ahmed, K. Aoun, F. Jeddi, J. Ghrab, M. A. El-aroui et al., , 2009.

, Visceral leishmaniasis in Tunisia: spatial distribution and association with climatic factors, Am J Trop Med Hyg, vol.81, issue.1, pp.40-45

R. Ben-ismail, S. Khaled, S. Makni, and M. S. Ben-rachid, Anti-leishmanial antibodies during natural infection of Psammomys obesus and Meriones shawi (Rodentia, Gerbillinae) by Leishmania major, Ann Soc Belg Med Trop, vol.69, issue.1, pp.35-40, 1989.

B. Ismail, R. , L. Gradoni, M. Gramiccia, S. Bettini et al., Epidemic cutaneous leishmaniasis in Tunisia: biochemical characterization of parasites, Trans R Soc Trop Med Hyg, vol.80, issue.4, pp.669-670, 1986.

B. Ismail, R. , M. Gramiccia, L. Gradoni, H. Helal et al., Isolation of Leishmania major from Phlebotomus papatasi in Tunisia, Trans R Soc Trop Med Hyg, vol.81, issue.5, p.749, 1987.

A. Ben-salah, H. Louzir, S. Chlif, M. Mokni, A. Zaatour et al.,

. Dellagi, The predictive validity of naturally acquired delayed-type hypersensitivity to leishmanin in resistance to Leishmania major-associated cutaneous leishmaniasis, J Infect Dis, vol.192, issue.11, pp.1981-1987, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00874052

S. Bertholet, A. Debrabant, F. Afrin, E. Caler, S. Mendez et al.,

L. Sacks, Antigen requirements for efficient priming of CD8+ T cells by Leishmania major-infected dendritic cells, Infect Immun, vol.73, issue.10, pp.6620-6628, 2005.

S. Bertholet, R. Goldszmid, A. Morrot, A. Debrabant, F. Afrin et al.,

M. Houde, A. Desjardins, D. Sher, and . Sacks, Leishmania antigens are presented to CD8+ T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo, J Immunol, vol.177, issue.6, pp.3525-3533, 2006.

J. Bettaieb, A. Toumi, S. Chlif, B. Chelghaf, A. Boukthir et al., Prevalence and determinants of Leishmania major infection in emerging and old foci in Tunisia, Parasit Vectors, vol.7, p.386, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358530

S. Bhaumik, R. Basu, S. Sen, K. Naskar, and S. Roy, KMP-11 DNA immunization significantly protects against L. donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major, Vaccine, vol.27, issue.9, pp.1306-1316, 2009.

P. J. Bjorkman and P. Parham, Structure, function, and diversity of class I major histocompatibility complex molecules, Annu Rev Biochem, vol.59, pp.253-288, 1990.

P. J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger et al., Structure of the human class I histocompatibility antigen, HLA-A2, Nature, vol.329, issue.6139, pp.506-512, 1987.

J. S. Blum, P. A. Wearsch, and P. Cresswell, Pathways of antigen processing, Annu Rev Immunol, vol.31, pp.443-473, 2013.

C. Bogdan, M. Rollinghoff, and A. Diefenbach, The role of nitric oxide in innate immunity, Immunol Rev, vol.173, pp.17-26, 2000.

G. P. Borja-cabrera, N. N. Correia-pontes, V. O. Silva, E. Paraguai-de-souza, W. R. Santos et al., Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (Sao Goncalo do Amarante, RN), Vaccine, vol.20, pp.3277-3284, 2002.

G. P. Borja-cabrera, F. N. Santos, F. S. Bauer, L. E. Parra, I. Menz et al., Immunogenicity assay of the Leishmune vaccine against canine visceral leishmaniasis in Brazil, Vaccine, vol.26, issue.39, pp.4991-4997, 2008.

R. L. Bottrel, W. O. Dutra, F. A. Martins, B. Gontijo, E. Carvalho et al., Flow cytometric determination of cellular sources and frequencies of key cytokine-producing lymphocytes directed against recombinant LACK and soluble Leishmania antigen in human cutaneous leishmaniasis, Infect Immun, vol.69, issue.5, pp.3232-3239, 2001.

A. Bouratbine, K. Aoun, J. Ghrab, Z. Harrat, M. S. Ezzedini et al., Spread of Leishmania killicki to Central and South-West Tunisia, Parasite, vol.12, issue.1, pp.59-63, 2005.

E. Bourreau, G. Prevot, R. Pradinaud, and P. Launois, Interleukin (IL)-13 is the predominant Th2 cytokine in localized cutaneous leishmaniasis lesions and renders specific CD4+ T cells unresponsive to IL-12, J Infect Dis, vol.183, issue.6, pp.953-959, 2001.

E. Bourreau, C. Ronet, P. Couppie, D. Sainte-marie, F. Tacchini-cottier et al., IL-10 producing CD8+ T cells in human infection with Leishmania guyanensis, Microbes Infect, vol.9, issue.8, pp.1034-1041, 2007.

T. Bousoffara, H. Louzir, A. Ben-salah, and K. Dellagi, Analysis of granzyme B activity as a surrogate marker of Leishmania-specific cell-mediated cytotoxicity in zoonotic cutaneous leishmaniasis, J Infect Dis, vol.189, issue.7, pp.1265-1273, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00875538

N. Bousslimi, K. Aoun, I. Ben-abda, N. Ben-alaya-bouafif, M. Raouane et al., Epidemiologic and clinical features of cutaneous leishmaniasis in southeastern Tunisia, Am J Trop Med Hyg, vol.83, issue.5, pp.1034-1039, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00620980

T. Boussoffara, M. S. Boubaker, M. B. Ahmed, M. Mokni, I. Guizani et al., Histological and immunological differences between zoonotic cutaneous leishmaniasis due to Leishmania major and sporadic cutaneous leishmaniasis due to Leishmania infantum, Parasite, vol.26, p.9, 2019.

T. Boussoffara, S. Chelif, M. B. Ahmed, M. Mokni, A. Ben et al., Immunity Against Leishmania major Infection: Parasite-Specific Granzyme B Induction as a Correlate of Protection, Front Cell Infect Microbiol, vol.8, p.397, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02009502

R. Bras-goncalves, E. Petitdidier, J. Pagniez, R. Veyrier, P. Cibrelus et al.,

J. Maquaire, J. L. Moreaux, and . Lemesre, Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum, Infect Genet Evol, vol.24, pp.1-14, 2014.

M. Breton, M. J. Tremblay, M. Ouellette, and B. Papadopoulou, Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis, Infect Immun, vol.73, issue.10, pp.6372-6382, 2005.

S. Burza, S. L. Croft, and M. Boelaert, Leishmaniasis, Lancet, vol.392, pp.951-970, 2018.

S. A. Calarota and F. Baldanti, Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays, Clin Dev Immunol, p.637649, 2013.

S. Cardinaud, R. Bouziat, P. S. Rohrlich, S. Tourdot, L. Weiss et al., Design of a HIV-1-derived HLA-B07.02-restricted polyepitope construct, AIDS, vol.23, issue.15, pp.1945-1954, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00484766

L. Carrera, R. T. Gazzinelli, R. Badolato, S. Hieny, W. Muller et al., Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice, J Exp Med, vol.183, issue.2, pp.515-526, 1996.

A. M. Carvalho, A. Magalhaes, L. P. Carvalho, O. Bacellar, P. Scott et al., Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis, BMC Infect Dis, vol.13, p.529, 2013.

L. P. Carvalho, S. Passos, O. Bacellar, M. Lessa, R. P. Almeida et al., Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis, Parasite Immunol, vol.29, issue.5, pp.251-258, 2007.

L. R. Castellano, D. C. Filho, L. Argiro, H. Dessein, A. Prata et al., Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production, Hum Immunol, vol.70, issue.6, pp.383-390, 2009.

F. A. Castelli, C. Buhot, A. Sanson, H. Zarour, S. Pouvelle-moratille et al., HLA-DP4, the most frequent HLA II molecule, defines a new supertype of peptide-binding specificity, J Immunol, vol.169, issue.12, pp.6928-6934, 2002.

F. A. Castelli, M. Leleu, S. Pouvelle-moratille, S. Farci, H. M. Zarour et al., Differential capacity of T cell priming in naive donors of promiscuous CD4+ T cell epitopes of HCV NS3 and Core proteins, Eur J Immunol, vol.37, issue.6, pp.1513-1523, 2007.

F. A. Castelli, N. Szely, A. Olivain, N. Casartelli, C. Grygar et al., Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of pre-existing peptide-specific T cells in healthy donors, J Immunol, vol.190, issue.11, pp.5757-5763, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109463

M. Castes, A. Agnelli, O. Verde, and A. J. Rondon, Characterization of the cellular immune response in American cutaneous leishmaniasis, Clin Immunol Immunopathol, vol.27, issue.2, pp.176-186, 1983.

M. Chaffai, M. S. Ben-rachid, R. Ben-ismail, A. Ben-osman, and N. Makni, Ann Dermatol Venereol, vol.115, issue.12, pp.1255-1260, 1988.

J. Chakravarty, S. Kumar, S. Trivedi, V. K. Rai, A. Singh et al., A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis, Vaccine, vol.29, pp.3531-3537, 2011.

R. Chamakh-ayari, R. Bras-goncalves, N. Bahi-jaber, E. Petitdidier, W. Markikou-ouni et al.,

J. Aoun, E. Moreno, P. Carrillo, H. Salotra, N. S. Kaushal et al.,

M. Lemesre, A. Chenik, and . Meddeb-garnaoui, In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis, PLoS One, vol.9, issue.5, p.92708, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01098532

R. Chamakh-ayari, M. Chenik, A. S. Chakroun, N. Bahi-jaber, K. Aoun et al., Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis, Parasit Vectors, vol.10, issue.1, p.185, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534742

K. P. Chang, Leishmanicidal mechanisms of human polymorphonuclear phagocytes, Am J Trop Med Hyg, vol.30, issue.2, pp.322-333, 1981.

I. S. Chauhan, J. Kaur, S. Krishna, A. Ghosh, P. Singh et al., Evolutionary comparison of prenylation pathway in kinetoplastid Leishmania and its sister Leptomonas, BMC Evol Biol, vol.15, p.261, 2015.

M. Chenik, N. Chaabouni, Y. Ben-achour-chenik, M. Ouakad, I. Lakhal-naouar et al., Identification of a new developmentally regulated Leishmania major large RAB GTPase, Biochem Biophys Res Commun, vol.341, issue.2, pp.541-548, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01974057

M. Chenik, H. Louzir, H. Ksontini, A. Dilou, I. Abdmouleh et al., Vaccination with the divergent portion of the protein histone H2B of Leishmania protects susceptible BALB/c mice against a virulent challenge with Leishmania major, Vaccine, vol.24, issue.14, pp.2521-2529, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02049467

J. H. Cho, O. Boyman, H. O. Kim, B. Hahm, M. P. Rubinstein et al., An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2, J Exp Med, vol.204, issue.8, pp.1787-1801, 2007.

J. Clarencio, C. I. De-oliveira, C. Favali, O. Medina, A. Caldas et al., Could the lower frequency of CD8+CD18+CD45RO+ lymphocytes be biomarkers of human VL?, Int Immunol, vol.21, issue.2, pp.137-144, 2009.

R. N. Coler, Y. Goto, L. Bogatzki, V. Raman, and S. G. Reed, Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells, Infect Immun, vol.75, issue.9, pp.4648-4654, 2007.

M. Collin, N. Mcgovern, and M. Haniffa, Human dendritic cell subsets, Immunology, vol.140, issue.1, pp.22-30, 2013.

J. Convit, M. E. Pinardi, and A. J. Rondon, Diffuse cutaneous leishmaniasis: a disease due to an immunological defect of the host, Trans R Soc Trop Med Hyg, vol.66, issue.4, pp.603-610, 1972.

D. G. Croan, D. A. Morrison, and J. T. Ellis, Evolution of the genus Leishmania revealed by comparison of DNA and RNA polymerase gene sequences, Mol Biochem Parasitol, vol.89, issue.2, pp.149-159, 1997.

A. K. Cruz, R. Titus, and S. M. Beverley, Plasticity in chromosome number and testing of essential genes in Leishmania by targeting, Proc Natl Acad Sci U S A, vol.90, issue.4, pp.1599-1603, 1993.

J. R. Currier, E. G. Kuta, E. Turk, L. B. Earhart, L. Loomis-price et al., A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays, J Immunol Methods, vol.260, issue.1-2, pp.157-172, 2002.

A. M. Da-cruz, A. L. Bertho, M. P. Oliveira-neto, and S. G. Coutinho, Flow cytometric analysis of cellular infiltrate from American tegumentary leishmaniasis lesions, Br J Dermatol, vol.153, issue.3, pp.537-543, 2005.

A. M. Da-cruz, R. Bittar, M. Mattos, M. P. Oliveira-neto, R. Nogueira et al., T-cell-mediated immune responses in patients with cutaneous or mucosal leishmaniasis: long-term evaluation after therapy, Clin Diagn Lab Immunol, vol.9, issue.2, pp.251-256, 2002.

C. Da-silva-santos and C. I. Brodskyn, The Role of CD4 and CD8 T Cells in Human Cutaneous Leishmaniasis, Front Public Health, vol.2, p.165, 2014.

H. Daneshvar, M. J. Namazi, H. Kamiabi, R. Burchmore, S. Cleaveland et al., Gentamicin-attenuated Leishmania infantum vaccine: protection of dogs against canine visceral leishmaniosis in endemic area of southeast of Iran, PLoS Negl Trop Dis, vol.8, issue.4, p.2757, 2014.

P. A. Darrah, D. T. Patel, P. M. De-luca, R. W. Lindsay, D. F. Davey et al.,

P. Hoff, S. G. Andersen, S. L. Reed, M. Morris, R. A. Roederer et al., Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major, Nat Med, vol.13, issue.7, pp.843-850, 2007.

S. Das, A. Freier, T. Boussoffara, S. Das, D. Oswald et al.,

H. Das, S. L. Louzir, F. Croft, P. Modabber, and . Walden, Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis, Sci Transl Med, vol.6, issue.234, pp.234-256, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01375107

J. Dausset, Acta Haematol, vol.20, issue.1-4, pp.156-166, 1958.

D. Brito, R. C. , J. M. Cardoso, L. E. Reis, J. F. Vieira et al., Peptide Vaccines for Leishmaniasis, Front Immunol, vol.9, p.1043, 2018.

C. De-oliveira-mendes-aguiar, R. Vieira-goncalves, L. H. Guimaraes, M. P. Oliveira-neto, E. M. Carvalho et al., Effector memory CD4(+) T cells differentially express activation associated molecules depending on the duration of American cutaneous leishmaniasis lesions, Clin Exp Immunol, vol.185, issue.2, pp.202-209, 2016.

M. F. Del-guercio, J. Sidney, G. Hermanson, C. Perez, H. M. Grey et al., Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype, J Immunol, vol.154, issue.2, pp.685-693, 1995.

G. Delgado, C. A. Parra-lopez, L. E. Vargas, R. Hoya, M. Estupinan et al., Characterizing cellular immune response to kinetoplastid membrane protein-11 (KMP-11) during Leishmania (Viannia) panamensis infection using dendritic cells (DCs) as antigen presenting cells (APCs), Parasite Immunol, vol.25, issue.4, pp.199-209, 2003.

P. Desjeux, The increase in risk factors for leishmaniasis worldwide, Trans R Soc Trop Med Hyg, vol.95, issue.3, pp.239-243, 2001.

P. Desjeux, Leishmaniasis: current situation and new perspectives, Comp Immunol Microbiol Infect Dis, vol.27, issue.5, pp.305-318, 2004.

A. Devault and A. L. Banuls, The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination, BMC Evol Biol, vol.8, p.292, 2008.

D. J. Diamond, J. York, J. Y. Sun, C. L. Wright, and S. J. Forman, Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection, Blood, vol.90, issue.5, pp.1751-1767, 1997.

D. S. Dias, P. A. Ribeiro, V. T. Martins, D. P. Lage, and L. E. Costa,

M. C. Galdino, B. M. Duarte, D. Roatt, A. L. Menezes-souza, E. A. Teixeira et al., Vaccination with a CD4(+) and CD8(+) T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis, Transl Res, vol.200, pp.18-34, 2018.

N. L. Diaz, F. A. Arvelaez, O. Zerpa, and F. J. Tapia, Inducible nitric oxide synthase and cytokine pattern in lesions of patients with American cutaneous leishmaniasis, Clin Exp Dermatol, vol.31, issue.1, pp.114-117, 2006.

A. Diefenbach, H. Schindler, N. Donhauser, E. Lorenz, T. Laskay et al., Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite, Immunity, vol.8, issue.1, pp.77-87, 1998.

M. R. Dikhit, A. Amit, A. K. Singh, A. Kumar, R. Mansuri et al., Vaccine potential of HLA-A2 epitopes from Leishmania Cysteine Protease Type III (CPC), Parasite Immunol, vol.39, issue.9, 2017.

M. R. Dikhit, S. Das, V. Mahantesh, A. Kumar, A. K. Singh et al., The potential HLA Class I-restricted epitopes derived from LeIF and TSA of Leishmania donovani evoke anti-leishmania CD8+ T lymphocyte response, Sci Rep, vol.8, issue.1, p.14175, 2018.

M. R. Dikhit, A. Kumar, S. Das, B. Dehury, A. K. Rout et al., Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis, Front Immunol, vol.8, p.1763, 2017.

M. R. Dikhit, A. Vijayamahantesh, A. Kumar, B. Amit, Y. P. Dehury et al.,

V. Ansari, R. K. Ali, V. Topno, K. Das, G. C. Pandey et al., Mining the Proteome of Leishmania donovani for the Development of Novel MHC Class I Restricted Epitope for the Control of Visceral Leishmaniasis, J Cell Biochem, vol.119, issue.1, pp.378-391, 2018.

J. L. Diniz, M. O. Costa, and D. U. Goncalves, Mucocutaneous Leishmaniasis: clinical markers in presumptive diagnosis, Braz J Otorhinolaryngol, vol.77, issue.3, pp.380-384, 2011.

A. Dostalova and P. Volf, Leishmania development in sand flies: parasite-vector interactions overview, Parasit Vectors, vol.5, p.276, 2012.

I. A. Doytchinova and D. R. Flower, In silico identification of supertypes for class II MHCs, J Immunol, vol.174, issue.11, pp.7085-7095, 2005.

C. Durier, O. Launay, V. Meiffredy, Y. Saidi, D. Salmon et al., Clinical safety of HIV lipopeptides used as vaccines in healthy volunteers and HIV-infected adults, AIDS, vol.20, issue.7, pp.1039-1049, 2006.

M. G. Duvall, M. L. Precopio, D. A. Ambrozak, A. Jaye, A. J. Mcmichael et al., Polyfunctional T cell responses are a hallmark of HIV-2 infection, Eur J Immunol, vol.38, issue.2, pp.350-363, 2008.

A. Egui, D. Ledesma, E. Perez-anton, A. Montoya, I. Gomez et al., Phenotypic and Functional Profiles of Antigen-Specific CD4(+) and CD8(+) T Cells Associated With Infection Control in Patients With Cutaneous Leishmaniasis, Front Cell Infect Microbiol, vol.8, p.393, 2018.

L. Eidsmo, S. Nylen, A. Khamesipour, M. A. Hedblad, F. Chiodi et al., The contribution of the Fas/FasL apoptotic pathway in ulcer formation during Leishmania majorinduced cutaneous Leishmaniasis, Am J Pathol, vol.166, issue.4, pp.1099-1108, 2005.

M. E. Elfaki, E. A. Khalil, A. S. De-groot, A. M. Musa, A. Gutierrez et al., Immunogenicity and immune modulatory effects of in silico predicted L. donovani candidate peptide vaccines, Hum Vaccin Immunother, vol.8, issue.12, pp.1769-1774, 2012.

A. M. Elhassan, M. S. Ali, E. Zijlstra, I. A. Eltoum, H. W. Ghalib et al., Post-kala-azar dermal leishmaniasis in the Sudan: peripheral neural involvement, Int J Dermatol, vol.31, issue.6, pp.400-403, 1992.

D. L. Farber, N. A. Yudanin, and N. P. Restifo, Human memory T cells: generation, compartmentalization and homeostasis, Nat Rev Immunol, vol.14, issue.1, pp.24-35, 2014.

D. R. Faria, P. E. Souza, F. V. Duraes, E. M. Carvalho, K. J. Gollob et al.,

O. Dutra, Recruitment of CD8(+) T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis, Parasite Immunol, vol.31, issue.8, pp.432-439, 2009.

A. P. Fernandes, M. M. Costa, E. A. Coelho, M. S. Michalick, E. Freitas et al., Protective immunity against challenge with Leishmania (Leishmania) chagasi in beagle dogs vaccinated with recombinant A2 protein, Vaccine, vol.26, pp.5888-5895, 2008.

L. Fernandez, E. Carrillo, L. Sanchez-sampedro, C. Sanchez, A. V. Ibarra-meneses et al., Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK) in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters, Front Immunol, vol.9, p.843, 2018.

K. E. Foulds, M. J. Rotte, M. A. Paley, B. Singh, D. C. Douek et al.,

R. A. Watford, C. Y. Seder, and . Wu, IFN-gamma mediates the death of Th1 cells in a paracrine manner, J Immunol, vol.180, issue.2, pp.842-849, 2008.

A. Gaafar, A. Kharazmi, A. Ismail, M. Kemp, A. Hey et al., Dichotomy of the T cell response to Leishmania antigens in patients suffering from cutaneous leishmaniasis; absence or scarcity of Th1 activity is associated with severe infections, Clin Exp Immunol, vol.100, issue.2, pp.239-245, 1995.

H. Gahery-segard, G. Pialoux, B. Charmeteau, S. Sermet, H. Poncelet et al., Multiepitopic B-and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine, J Virol, vol.74, issue.4, pp.1694-1703, 2000.

M. E. Gama, J. M. Costa, J. C. Pereira, C. M. Gomes, and C. E. Corbett, Serum cytokine profile in the subclinical form of visceral leishmaniasis, Braz J Med Biol Res, vol.37, issue.1, pp.129-136, 2004.

P. C. Garnham, The genus Leishmania, Bull World Health Organ, vol.44, issue.4, pp.477-489, 1971.

S. T. Gaze, W. O. Dutra, M. Lessa, H. Lessa, L. H. Guimaraes et al., Mucosal leishmaniasis patients display an activated inflammatory T-cell phenotype associated with a nonbalanced monocyte population, Scand J Immunol, vol.63, issue.1, pp.70-78, 2006.

T. Gebhardt, L. M. Wakim, L. Eidsmo, P. C. Reading, W. R. Heath et al., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus, Nat Immunol, vol.10, issue.5, pp.524-530, 2009.

M. Gentilini, Médecine tropicale -6e édition Book, 2012.

B. Genton, G. Pluschke, L. Degen, A. R. Kammer, N. Westerfeld et al., A randomized placebocontrolled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers, PLoS One, vol.2, issue.10, p.1018, 2007.

P. M. Gillespie, C. M. Beaumier, U. Strych, T. Hayward, P. J. Hotez et al., Status of vaccine research and development of vaccines for leishmaniasis, Vaccine, vol.34, issue.26, pp.2992-2995, 2016.

N. D. Glennie and P. Scott, Memory T cells in cutaneous leishmaniasis, Cell Immunol, vol.309, pp.50-54, 2016.

N. D. Glennie, S. W. Volk, and P. Scott, Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes, PLoS Pathog, vol.13, issue.4, p.1006349, 2017.

N. D. Glennie, V. A. Yeramilli, D. P. Beiting, S. W. Volk, C. T. Weaver et al., Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection, J Exp Med, vol.212, issue.9, pp.1405-1414, 2015.

G. Burden-of-disease and C. Study, Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.386, issue.9995, pp.743-800, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01285498

K. J. Gollob, L. R. Antonelli, and W. O. Dutra, Insights into CD4+ memory T cells following Leishmania infection, Trends Parasitol, vol.21, issue.8, pp.347-350, 2005.

K. J. Gollob, A. G. Viana, and W. O. Dutra, Immunoregulation in human American leishmaniasis: balancing pathology and protection, Parasite Immunol, vol.36, issue.8, pp.367-376, 2014.

C. Gonzalez-lombana, C. Gimblet, O. Bacellar, W. W. Oliveira, S. Passos et al., IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection, PLoS Pathog, vol.9, issue.3, p.1003243, 2013.

J. S. Goydos, E. Elder, T. L. Whiteside, O. J. Finn, and M. T. Lotze, A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma, J Surg Res, vol.63, issue.1, pp.298-304, 1996.

J. Greenbaum, J. Sidney, J. Chung, C. Brander, B. Peters et al., Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes, Immunogenetics, vol.63, issue.6, pp.325-335, 2011.

C. L. Greenblatt, The present and future of vaccination for cutaneous leishmaniasis, Prog Clin Biol Res, vol.47, pp.259-285, 1980.

G. Grimaldi, R. B. Jr, D. Tesh, and . Mcmahon-pratt, A review of the geographic distribution and epidemiology of leishmaniasis in the New World, Am J Trop Med Hyg, vol.41, issue.6, pp.687-725, 1989.

P. Gueirard, A. Laplante, C. Rondeau, G. Milon, and M. Desjardins, Trafficking of Leishmania donovani promastigotes in non-lytic compartments in neutrophils enables the subsequent transfer of parasites to macrophages, Cell Microbiol, vol.10, issue.1, pp.100-111, 2008.

F. Z. Guerfali, H. Ben-abdallah, R. M. Sghaier, K. Ben-aissa, G. Mkannez et al.,

. Laouini, An in silico immunological approach for prediction of CD8+ T cell epitopes of Leishmania major proteins in susceptible BALB/c and resistant C57BL/6 murine models of infection, Infect Genet Evol, vol.9, issue.3, pp.344-350, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01973331

P. Guermonprez, L. Saveanu, M. Kleijmeer, J. Davoust, P. Van-endert et al., ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells, Nature, vol.425, issue.6956, pp.397-402, 2003.

J. A. Guerra, S. R. Prestes, H. Silveira, L. I. Coelho, P. Gama et al., Mucosal Leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon, PLoS Negl Trop Dis, vol.5, issue.3, p.980, 2011.

A. B. Guimaraes-costa, M. T. Nascimento, G. S. Froment, R. P. Soares, F. N. Morgado et al., Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps, Proc Natl Acad Sci U S A, vol.106, issue.16, pp.6748-6753, 2009.

P. Gurung and T. D. Kanneganti, Innate immunity against Leishmania infections, Cell Microbiol, vol.17, issue.9, pp.1286-1294, 2015.

Y. Gutierrez, G. H. Salinas, G. Palma, L. B. Valderrama, C. V. Santrich et al., Correlation between histopathology, immune response, clinical presentation, and evolution in Leishmania braziliensis infection, Am J Trop Med Hyg, vol.45, issue.3, pp.281-289, 1991.

M. Hamze, S. Meunier, A. Karle, A. Gdoura, A. Goudet et al., Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors, Front Immunol, vol.8, p.500, 2017.

E. Handman, F. M. Symons, T. M. Baldwin, J. M. Curtis, and J. P. Scheerlinck, Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response, Infect Immun, vol.63, issue.11, pp.4261-4267, 1995.

Y. Hashiguchi, E. L. Gomez, H. Kato, L. R. Martini, L. N. Velez et al., Diffuse and disseminated cutaneous leishmaniasis: clinical cases experienced in Ecuador and a brief review, Trop Med Health, vol.44, issue.2, 2016.

F. P. Heinzel, M. D. Sadick, B. J. Holaday, R. L. Coffman, and R. M. Locksley, Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets, J Exp Med, vol.169, issue.1, pp.59-72, 1989.

S. E. Henrickson, T. R. Mempel, I. B. Mazo, B. Liu, M. N. Artyomov et al., T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation, Nat Immunol, vol.9, issue.3, pp.282-291, 2008.

J. Hernandez-ruiz, N. Salaiza-suazo, G. Carrada, S. Escoto, A. Ruiz-remigio et al., CD8 cells of patients with diffuse cutaneous leishmaniasis display functional exhaustion: the latter is reversed, in vitro, by TLR2 agonists, PLoS Negl Trop Dis, vol.4, issue.11, p.871, 2010.

M. Hirayama and Y. Nishimura, The present status and future prospects of peptidebased cancer vaccines, Int Immunol, vol.28, issue.7, pp.319-328, 2016.

B. J. Holaday, M. M. Pompeu, S. Jeronimo, M. J. Texeira, A. Sousa-ade et al.,

R. D. Vasconcelos, J. S. Pearson, R. M. Abrams, and . Locksley, Potential role for interleukin-10 in the immunosuppression associated with kala azar, J Clin Invest, vol.92, issue.6, pp.2626-2632, 1993.

S. G. Hoseini, S. H. Javanmard, S. H. Zarkesh, A. Khamesipour, L. Rafiei et al., Regulatory T-cell profile in early and late lesions of cutaneous leishmaniasis due to Leishmania major, J Res Med Sci, vol.17, issue.6, pp.513-518, 2012.

M. Houde, S. Bertholet, E. Gagnon, S. Brunet, G. Goyette et al., Phagosomes are competent organelles for antigen cross-presentation, Nature, vol.425, issue.6956, pp.402-406, 2003.

X. Hu, P. K. Paik, J. Chen, A. Yarilina, L. Kockeritz et al., IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins, Immunity, vol.24, issue.5, pp.563-574, 2006.

M. Huber, E. Timms, T. W. Mak, M. Rollinghoff, and M. Lohoff, Effective and longlasting immunity against the parasite Leishmania major in CD8-deficient mice, Infect Immun, vol.66, issue.8, pp.3968-3970, 1998.

S. Iborra, M. Soto, J. Carrion, C. Alonso, and J. M. Requena, Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis, Vaccine, vol.22, pp.3865-3876, 2004.

I. Jafari, V. Shargh, M. Shahryari, A. Abbasi, M. R. Jaafari et al., Cationic liposomes formulated with a novel whole Leishmania lysate (WLL) as a vaccine for leishmaniasis in murine model, Immunobiology, vol.223, issue.6-7, pp.493-500, 2018.

A. Jardim, J. Alexander, H. S. Teh, D. Ou, and R. W. Olafson, Immunoprotective Leishmania major synthetic T cell epitopes, J Exp Med, vol.172, issue.2, pp.645-648, 1990.

X. Jiang, R. A. Clark, L. Liu, A. J. Wagers, R. C. Fuhlbrigge et al., Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity, Nature, vol.483, issue.7388, pp.227-231, 2012.

S. Joshi, N. K. Yadav, K. Rawat, V. Kumar, R. Ali et al., Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani, Front Immunol, vol.10, p.288, 2019.

A. A. Kamil, E. A. Khalil, A. M. Musa, F. Modabber, M. M. Mukhtar et al.,

D. Zijlstra, P. G. Sacks, F. Smith, A. M. Zicker, and . El-hassan, Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guerrin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers, Trans R Soc Trop Med Hyg, vol.97, issue.3, pp.365-368, 2003.

W. Kammoun-rebai, I. Naouar, V. Libri, M. Albert, H. Louzir et al.,

. Duffy, Protein biomarkers discriminate Leishmania major-infected and non-infected individuals in areas endemic for cutaneous leishmaniasis, BMC Infect Dis, vol.16, p.138, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358493

M. M. Kane and D. M. Mosser, The role of IL-10 in promoting disease progression in leishmaniasis, J Immunol, vol.166, issue.2, pp.1141-1147, 2001.

S. Kannanganat, B. G. Kapogiannis, C. Ibegbu, L. Chennareddi, P. Goepfert et al., Human immunodeficiency virus type 1 controllers but not noncontrollers maintain CD4 T cells coexpressing three cytokines, J Virol, vol.81, issue.21, pp.12071-12076, 2007.

H. Kaushal, R. Bras-goncalves, K. Avishek, D. Kumar-deep, E. Petitdidier et al., Evaluation of cellular immunological responses in mono-and polymorphic clinical forms of post-kala-azar dermal leishmaniasis in India, Clin Exp Immunol, vol.185, issue.1, pp.50-60, 2016.

H. Kaushal, R. Bras-goncalves, N. S. Negi, J. L. Lemesre, G. Papierok et al., Role of CD8(+) T cells in protection against Leishmania donovani infection in healed Visceral Leishmaniasis individuals, BMC Infect Dis, vol.14, p.653, 2014.

P. M. Kaye and T. Aebischer, Visceral leishmaniasis: immunology and prospects for a vaccine, Clin Microbiol Infect, vol.17, issue.10, pp.1462-1470, 2011.

K. Kedzierska, J. M. Curtis, S. A. Valkenburg, L. A. Hatton, H. Kiu et al.,

. Kedzierski, Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses, PLoS One, vol.7, issue.3, p.33161, 2012.

L. Kedzierski, J. Montgomery, D. Bullen, J. Curtis, E. Gardiner et al.,

. Handman, A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3, J Immunol, vol.172, issue.8, pp.4902-4906, 2004.

M. Kemp, E. Handman, K. Kemp, A. Ismail, M. D. Mustafa et al., The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major, FEMS Immunol Med Microbiol, vol.20, issue.3, pp.209-218, 1998.

M. Kemp, A. S. Hey, J. A. Kurtzhals, C. B. Christensen, A. Gaafar et al., Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis, Clin Exp Immunol, vol.96, issue.3, pp.410-415, 1994.

M. Kemp, J. A. Kurtzhals, A. Kharazmi, and T. G. Theander, Interferon-gamma and interleukin-4 in human Leishmania donovani infections, Immunol Cell Biol, vol.71, pp.583-587, 1993.

H. Keshavarz-valian, M. Rostami, M. Tasbihi, A. Mohammadi, S. E. Eskandari et al., CCR7+ central and CCR7-effector memory CD4+ T cells in human cutaneous leishmaniasis, J Clin Immunol, vol.33, issue.1, pp.220-234, 2013.

A. Khamesipour, M. Rostami, M. Tasbihi, A. Mohammadi, T. Shahrestani et al., Phenotyping of circulating CD8(+) T cell subsets in human cutaneous leishmaniasis, Microbes Infect, vol.14, issue.9, pp.702-711, 2012.

K. H. Khan, DNA vaccines: roles against diseases, Germs, vol.3, issue.1, pp.26-35, 2013.

S. Khorasanizadeh, The nucleosome: from genomic organization to genomic regulation, Cell, vol.116, issue.2, pp.259-272, 2004.

P. E. Kima, N. H. Ruddle, and D. Mcmahon-pratt, Presentation via the class I pathway by Leishmania amazonensis-infected macrophages of an endogenous leishmanial antigen to CD8+ T cells, J Immunol, vol.159, issue.4, pp.1828-1834, 1997.

P. E. Kima and L. Soong, Interferon gamma in leishmaniasis, Front Immunol, vol.4, p.156, 2013.

M. Kopf, F. Brombacher, G. Kohler, G. Kienzle, K. H. Widmann et al., IL-4-deficient Balb/c mice resist infection with Leishmania major, J Exp Med, vol.184, issue.3, pp.1127-1136, 1996.

A. Kumar and M. Samant, DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control, Parasite Immunol, vol.38, issue.5, pp.273-281, 2016.

P. Kumar, P. Misra, C. P. Thakur, A. Saurabh, N. Rishi et al., T cell suppression in the bone marrow of visceral leishmaniasis patients: impact of parasite load, Clin Exp Immunol, vol.191, issue.3, pp.318-327, 2018.

K. M. Kurkjian, A. J. Mahmutovic, K. L. Kellar, R. Haque, C. Bern et al., Multiplex analysis of circulating cytokines in the sera of patients with different clinical forms of visceral leishmaniasis, Cytometry A, vol.69, issue.5, pp.353-358, 2006.

I. Lakhal-naouar, B. M. Slike, N. E. Aronson, and M. A. Marovich, The Immunology of a Healing Response in Cutaneous Leishmaniasis Treated with Localized Heat or Systemic Antimonial Therapy, PLoS Negl Trop Dis, vol.9, issue.10, p.4178, 2015.

A. Lanzavecchia and F. Sallusto, Understanding the generation and function of memory T cell subsets, Curr Opin Immunol, vol.17, issue.3, pp.326-332, 2005.

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes?, Trends Microbiol, vol.11, issue.5, pp.210-214, 2003.

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: apoptosis as infection-promoting factor, Immunobiology, vol.213, issue.3-4, pp.183-191, 2008.

O. Launay, C. Durier, C. Desaint, B. Silbermann, A. Jackson et al., Cellular immune responses induced with dose-sparing intradermal administration of HIV vaccine to HIV-uninfected volunteers in the ANRS VAC16 trial, PLoS One, vol.2, issue.8, p.725, 2007.

M. D. Laurenti, C. N. Rossi, V. L. Da-matta, T. Y. Tomokane, C. E. Corbett et al., Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector, Vet Parasitol, vol.196, issue.3-4, pp.296-300, 2013.

J. L. Lemesre, P. Holzmuller, M. Cavaleyra, R. B. Goncalves, G. Hottin et al., Protection against experimental visceral leishmaniasis infection in dogs immunized with purified excreted secreted antigens of Leishmania infantum promastigotes, Vaccine, vol.23, issue.22, pp.2825-2840, 2005.

J. L. Lemesre, P. Holzmuller, R. B. Goncalves, G. Bourdoiseau, C. Hugnet et al., Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial, Vaccine, vol.25, issue.21, pp.4223-4234, 2007.

A. Levy, J. Pitcovski, S. Frankenburg, O. Elias, Y. Altuvia et al., A melanoma multiepitope polypeptide induces specific CD8+ T-cell response, Cell Immunol, vol.250, issue.1-2, pp.24-30, 2007.

D. A. Lewinsohn, D. M. Lewinsohn, and T. J. Scriba, Polyfunctional CD4(+) T Cells As Targets for Tuberculosis Vaccination, Front Immunol, vol.8, p.1262, 2017.

W. Li, M. D. Joshi, S. Singhania, K. H. Ramsey, and A. K. Murthy, Peptide Vaccine: Progress and Challenges, Vaccines (Basel), vol.2, issue.3, pp.515-536, 2014.

F. Y. Liew, C. Parkinson, S. Millott, A. Severn, and M. Carrier, Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis, Immunology, vol.69, issue.4, pp.570-573, 1990.

J. D. Lima-junior, F. N. Morgado, and F. Conceicao-silva, How Can Elispot Add Information to Improve Knowledge on Tropical Diseases, Cells, vol.6, issue.4, 2017.

L. Lin, G. Finak, K. Ushey, C. Seshadri, T. R. Hawn et al., COMPASS identifies T-cell subsets correlated with clinical outcomes, Nat Biotechnol, vol.33, issue.6, pp.610-616, 2015.

T. Lindenstrom, E. M. Agger, K. S. Korsholm, P. A. Darrah, C. Aagaard et al., Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells, J Immunol, vol.182, issue.12, pp.8047-8055, 2009.

D. Liu and J. E. Uzonna, The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response, Front Cell Infect Microbiol, vol.2, p.83, 2012.

B. D. Livingston, C. Crimi, H. Grey, G. Ishioka, F. V. Chisari et al., The hepatitis B virus-specific CTL responses induced in humans by lipopeptide vaccination are comparable to those elicited by acute viral infection, J Immunol, vol.159, issue.3, pp.1383-1392, 1997.

A. Llanos-cuentas, W. Calderon, M. Cruz, J. A. Ashman, F. P. Alves et al.,

S. Bogatzki, E. M. Bertholet, S. J. Laughlin, A. M. Kahn, K. D. Beckmann et al., A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis, Vaccine, vol.28, pp.7427-7435, 2010.

E. Loing, M. Andrieu, K. Thiam, D. Schorner, K. H. Wiesmuller et al., Extension of HLA-A*0201-restricted minimal epitope by N epsilonpalmitoyl-lysine increases the life span of functional presentation to cytotoxic T cells, J Immunol, vol.164, issue.2, pp.900-907, 2000.

J. A. Lopez, J. H. Lebowitz, S. M. Beverley, H. G. Rammensee, and P. Overath, Leishmania mexicana promastigotes induce cytotoxic T lymphocytes in vivo that do not recognize infected macrophages, Eur J Immunol, vol.23, issue.1, pp.217-223, 1993.

S. Lopez-kostka, S. Dinges, K. Griewank, Y. Iwakura, M. C. Udey et al., IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice, J Immunol, vol.182, issue.5, pp.3039-3046, 2009.

H. Louzir, P. C. Melby, A. Ben, H. Salah, K. Marrakchi et al., Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major, J Infect Dis, vol.177, issue.6, pp.1687-1695, 1998.

O. Lund, M. Nielsen, C. Kesmir, A. G. Petersen, C. Lundegaard et al., Definition of supertypes for HLA molecules using clustering of specificity matrices, Immunogenetics, vol.55, issue.12, pp.797-810, 2004.

W. A. Macdonald, A. W. Purcell, N. A. Mifsud, L. K. Ely, D. S. Williams et al., A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition, J Exp Med, vol.198, issue.5, pp.679-691, 2003.

A. B. Macedo, J. C. Sanchez-arcila, A. O. Schubach, S. C. Mendonca, A. Marins-dos-santos et al., , 2012.

, Multifunctional CD4(+) T cells in patients with American cutaneous leishmaniasis, Clin Exp Immunol, vol.167, issue.3, pp.505-513

P. R. Machado, M. E. Rosa, D. Costa, M. Mignac, J. S. Silva et al., Reappraisal of the immunopathogenesis of disseminated leishmaniasis: in situ and systemic immune response, Trans R Soc Trop Med Hyg, vol.105, issue.8, pp.438-444, 2011.

A. C. Maretti-mira, J. Bittner, M. P. Oliveira-neto, M. Liu, D. Kang et al., Transcriptome patterns from primary cutaneous Leishmania braziliensis infections associate with eventual development of mucosal disease in humans, PLoS Negl Trop Dis, vol.6, issue.9, p.1816, 2012.

M. Martinez-lopez, S. Iborra, R. Conde-garrosa, and D. Sancho, Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice, Eur J Immunol, vol.45, issue.1, pp.119-129, 2015.

V. T. Martins, M. C. Duarte, D. P. Lage, L. E. Costa, A. M. Carvalho et al., A recombinant chimeric protein composed of human and mice-specific CD4(+) and CD8(+) T-cell epitopes protects against visceral leishmaniasis, Parasite Immunol, vol.39, issue.1, 2017.

C. Mary, V. Auriault, B. Faugere, and A. J. Dessein, Control of Leishmania infantum infection is associated with CD8(+) and gamma interferon-and interleukin-5-producing CD4(+) antigen-specific T cells, Infect Immun, vol.67, issue.11, pp.5559-5566, 1999.

D. Masopust, V. Vezys, A. L. Marzo, and L. Lefrancois, Preferential localization of effector memory cells in nonlymphoid tissue, Science, vol.291, issue.5512, pp.2413-2417, 2001.

S. Mazumder, M. Maji, A. Das, and N. Ali, Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice, PLoS One, vol.6, issue.2, p.14644, 2011.

A. Meddeb-garnaoui, A. Toumi, H. Ghelis, M. Mahjoub, H. Louzir et al., Cellular and humoral responses induced by Leishmania histone H2B and its divergent and conserved parts in cutaneous and visceral leishmaniasis patients, respectively, Vaccine, vol.28, issue.7, pp.1881-1886, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00621005

F. J. Medrano, J. Hernandez-quero, E. Jimenez, J. A. Pineda, A. Rivero et al., Visceral leishmaniasis in HIV-1-infected individuals: a common opportunistic infection in Spain?, AIDS, vol.6, issue.12, pp.1499-1503, 1992.

P. C. Melby, F. J. Andrade-narvaez, B. J. Darnell, G. Valencia-pacheco, V. V. Tryon et al., Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis, Infect Immun, vol.62, issue.3, pp.837-842, 1994.

C. J. Melief and J. H. Kessler, Novel insights into the HLA class I immunopeptidome and T-cell immunosurveillance, Genome Med, vol.9, issue.1, p.44, 2017.

T. R. Mempel, S. E. Henrickson, and U. H. Von-andrian, T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases, Nature, vol.427, issue.6970, pp.154-159, 2004.

S. Mendez, S. K. Reckling, C. A. Piccirillo, D. Sacks, and Y. Belkaid, Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity, J Exp Med, vol.200, issue.2, pp.201-210, 2004.

S. A. Miles, S. M. Conrad, R. G. Alves, S. M. Jeronimo, and D. M. Mosser, A role for IgG immune complexes during infection with the intracellular pathogen Leishmania, J Exp Med, vol.201, issue.5, pp.747-754, 2005.

M. Mohrs, G. B.-ledermann, A. Kohler, A. Dorfmuller, F. Gessner et al., Differences between IL-4-and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling, J Immunol, vol.162, issue.12, pp.7302-7308, 1999.

R. Molina, C. Amela, J. Nieto, M. San-andres, F. Gonzalez et al.,

A. , Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus, Trans R Soc Trop Med Hyg, vol.88, issue.4, pp.491-493, 1994.

F. Mollinedo, H. Janssen, J. De-la-iglesia-vicente, J. A. Villa-pulgarin, and J. Calafat, Selective fusion of azurophilic granules with Leishmania-containing phagosomes in human neutrophils, J Biol Chem, vol.285, issue.45, pp.34528-34536, 2010.

J. J. Moon, H. H. Chu, M. Pepper, S. J. Mcsorley, S. C. Jameson et al.,

. Jenkins, Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude, Immunity, vol.27, issue.2, pp.203-213, 2007.

Z. Mou, J. Li, T. Boussoffara, H. Kishi, H. Hamana et al., Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells, Sci Transl Med, vol.7, issue.310, pp.310-167, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01375023

P. M. Moyle and I. Toth, Self-adjuvanting lipopeptide vaccines, Curr Med Chem, vol.15, issue.5, pp.506-516, 2008.

I. Muller, Role of T cell subsets during the recall of immunologic memory to Leishmania major, Eur J Immunol, vol.22, issue.12, pp.3063-3069, 1992.

J. L. Murray, M. E. Gillogly, D. Przepiorka, H. Brewer, N. K. Ibrahim et al., , 2002.

, Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer, Clin Cancer Res, vol.8, issue.11, pp.3407-3418

I. Naouar, T. Boussoffara, M. B. Ahmed, N. Hmida, A. Gharbi et al., Involvement of different CD4(+) T cell subsets producing granzyme B in the immune response to Leishmania major antigens, Mediators Inflamm, p.636039, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01059851

I. Naouar, T. Boussoffara, M. Chenik, S. Gritli, M. B. Ahmed et al., Prediction of T Cell Epitopes from Leishmania major Potentially Excreted/Secreted Proteins Inducing Granzyme B Production, PLoS One, vol.11, issue.1, p.147076, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356501

E. Nardin, The past decade in malaria synthetic peptide vaccine clinical trials, Hum Vaccin, vol.6, issue.1, pp.27-38, 2010.

E. Nascimento, D. F. Fernandes, E. P. Vieira, A. Campos-neto, J. A. Ashman et al., A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with meglumine antimoniate for the treatment of cutaneous leishmaniasis, Vaccine, vol.28, issue.40, pp.6581-6587, 2010.

M. S. Nascimento, V. Carregaro, D. S. Lima-junior, D. L. Costa, B. Ryffel et al., Interleukin 17A acts synergistically with interferon gamma to promote protection against Leishmania infantum infection, J Infect Dis, vol.211, issue.6, pp.1015-1026, 2015.

M. Nateghi-rostami, H. Keshavarz, R. Edalat, A. Sarrafnejad, T. Shahrestani et al., CD8+ T cells as a source of IFN-gamma production in human cutaneous leishmaniasis, PLoS Negl Trop Dis, vol.4, issue.10, p.845, 2010.

M. Nateghi-rostami, H. Valian, S. E. Eskandari, A. Mohammadi, and S. T. ,

A. Shahrestani, A. Sarraf-nejad, and . Khamesipour, Differential in vitro CD4+/CD8+, 2010.

, T-cell response to live vs. killed Leishmania major, Parasite Immunol, vol.32, issue.2, pp.101-110

J. Neefjes, M. L. Jongsma, P. Paul, and O. Bakke, Towards a systems understanding of MHC class I and MHC class II antigen presentation, Nat Rev Immunol, vol.11, issue.12, pp.823-836, 2011.

D. Nico, D. C. Gomes, M. V. Alves-silva, E. O. Freitas, A. Morrot et al., Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains, Front Immunol, vol.5, p.189, 2014.

N. Noben-trauth, W. E. Paul, and D. L. Sacks, IL-4-and IL-4 receptor-deficient BALB/c mice reveal differences in susceptibility to Leishmania major parasite substrains, J Immunol, vol.162, issue.10, pp.6132-6140, 1999.

F. O. Novais, L. P. Carvalho, J. W. Graff, D. P. Beiting, G. Ruthel et al., Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis, PLoS Pathog, vol.9, issue.7, p.1003504, 2013.

F. O. Novais, L. P. Carvalho, S. Passos, D. S. Roos, E. M. Carvalho et al., Genomic profiling of human Leishmania braziliensis lesions identifies transcriptional modules associated with cutaneous immunopathology, J Invest Dermatol, vol.135, issue.1, pp.94-101, 2015.

F. O. Novais and P. Scott, CD8+ T cells in cutaneous leishmaniasis: the good, the bad, and the ugly, Semin Immunopathol, vol.37, issue.3, pp.251-259, 2015.

M. O'ryan, J. Stoddard, D. Toneatto, J. Wassil, and P. M. Dull, A multi-component meningococcal serogroup B vaccine (4CMenB): the clinical development program, Drugs, vol.74, issue.1, pp.15-30, 2014.

I. Okwor, Z. Mou, D. Liu, and J. Uzonna, Protective immunity and vaccination against cutaneous leishmaniasis, Front Immunol, vol.3, p.128, 2012.

I. B. Okwor, P. Jia, Z. Mou, C. Onyilagha, and J. E. Uzonna, CD8+ T cells are preferentially activated during primary low dose leishmania major infection but are completely dispensable during secondary anti-Leishmania immunity, PLoS Negl Trop Dis, vol.8, issue.11, p.3300, 2014.

G. Oliva, J. Nieto, V. Manzillo, S. Cappiello, E. Fiorentino et al., A randomised, double-blind, controlled efficacy trial of the LiESP/QA-21 vaccine in naive dogs exposed to two leishmania infantum transmission seasons, PLoS Negl Trop Dis, vol.8, issue.10, p.3213, 2014.

F. Oliveira, A. Bafica, A. B. Rosato, C. B. Favali, J. M. Costa et al., Lesion size correlates with Leishmania antigen-stimulated TNF-levels in human cutaneous leishmaniasis, Am J Trop Med Hyg, vol.85, issue.1, pp.70-73, 2011.

F. Oliveira, E. Rowton, H. Aslan, R. Gomes, P. A. Castrovinci et al.,

D. Rowland, S. Gilmore, S. G. Doumbia, P. G. Reed, J. F. Lawyer et al., A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates, Sci Transl Med, vol.7, issue.290, pp.290-290, 2015.

G. A. Oliveira, K. Wetzel, J. M. Calvo-calle, R. Nussenzweig, A. Schmidt et al., Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial, Infect Immun, vol.73, issue.6, pp.3587-3597, 2005.

A. Oryan and M. Akbari, Worldwide risk factors in leishmaniasis, Asian Pac J Trop Med, vol.9, issue.10, pp.925-932, 2016.

D. Ou, L. A. Mitchell, and A. J. Tingle, A new categorization of HLA DR alleles on a functional basis, Hum Immunol, vol.59, issue.10, pp.665-676, 1998.

H. Ozbilge, N. Aksoy, M. S. Gurel, and S. Yazar, IgG and IgG subclass antibodies in patients with active cutaneous leishmaniasis, J Med Microbiol, vol.55, pp.1329-1331, 2006.

N. Pakpour, C. Zaph, and P. Scott, The central memory CD4+ T cell population generated during Leishmania major infection requires IL-12 to produce IFN-gamma, J Immunol, vol.180, issue.12, pp.8299-8305, 2008.

P. Panina-bordignon, A. Tan, A. Termijtelen, S. Demotz, G. Corradin et al., Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells, Eur J Immunol, vol.19, issue.12, pp.2237-2242, 1989.

C. S. Peacock, K. Seeger, D. Harris, L. Murphy, J. C. Ruiz et al.,

A. Adlem, M. Tivey, A. Aslett, A. Kerhornou, A. Ivens et al.,

L. O. Hilley, L. R. Brito, B. Tosi, A. K. Barrell, J. C. Cruz et al., Comparative genomic analysis of three Leishmania species that cause diverse human disease, Nat Genet, vol.39, issue.7, pp.839-847, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169316

R. D. Pearson and A. Q. Sousa, Clinical spectrum of Leishmaniasis, Clin Infect Dis, vol.22, issue.1, pp.1-13, 1996.

G. E. Peoples, J. M. Gurney, M. T. Hueman, M. M. Woll, G. B. Ryan et al.,

C. D. Fisher, C. G. Shriver, S. Ioannides, and . Ponniah, Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients, J Clin Oncol, vol.23, issue.30, pp.7536-7545, 2005.

R. Pereira-carvalho, C. O. Mendes-aguiar, M. P. Oliveira-neto, C. J. Covas, A. L. Bertho et al., Leishmania braziliensis-reactive T cells are down-regulated in long-term cured cutaneous Leishmaniasis, but the renewal capacity of T effector memory compartments is preserved, PLoS One, vol.8, issue.11, p.81529, 2013.

B. A. Pereira, F. S. Silva, K. M. Rebello, M. Marin-villa, Y. M. Traub-cseko et al.,

A. L. Andrade, E. R. Bertho, C. R. Caffarena, and . Alves, In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection, BMC Immunol, vol.12, p.44, 2011.

L. I. Pereira, M. L. Dorta, A. J. Pereira, R. P. Bastos, M. A. Oliveira et al., Increase of NK cells and proinflammatory monocytes are associated with the clinical improvement of diffuse cutaneous leishmaniasis after immunochemotherapy with BCG/Leishmania antigens, Am J Trop Med Hyg, vol.81, issue.3, pp.378-383, 2009.

N. C. Peters, J. G. Egen, N. Secundino, A. Debrabant, N. Kimblin et al., In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies, Science, vol.321, issue.5891, pp.970-974, 2008.

E. Petitdidier, J. Pagniez, G. Papierok, P. Vincendeau, J. L. Lemesre et al., Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs, PLoS Negl Trop Dis, vol.10, issue.5, p.4614, 2016.
URL : https://hal.archives-ouvertes.fr/ird-01321775

N. Petrovsky and J. C. Aguilar, Vaccine adjuvants: current state and future trends, Immunol Cell Biol, vol.82, issue.5, pp.488-496, 2004.

C. Phetsouphanh, S. Pillai, and J. J. Zaunders, Editorial: Cytotoxic CD4+ T Cells in Viral Infections, Front Immunol, vol.8, p.1729, 2017.

M. G. Pitta, A. Romano, S. Cabantous, S. Henri, A. Hammad et al., IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani, J Clin Invest, vol.119, issue.8, pp.2379-2387, 2009.

M. J. Pittet, D. Valmori, P. R. Dunbar, D. E. Speiser, D. Lienard et al., High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals, J Exp Med, vol.190, issue.5, pp.705-715, 1999.

M. Podinovskaia and A. Descoteaux, Leishmania and the macrophage: a multifaceted interaction, Future Microbiol, vol.10, issue.1, pp.111-129, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01123316

A. Ponte-sucre, F. Gamarro, J. C. Dujardin, M. P. Barrett, R. Lopez-velez et al., Drug resistance and treatment failure in leishmaniasis: A 21st century challenge, PLoS Negl Trop Dis, vol.11, issue.12, p.6052, 2017.

D. M. Pratt and J. R. David, Monoclonal antibodies that distinguish between New World species of Leishmania, Nature, vol.291, issue.5816, pp.581-583, 1981.

M. Prlic, G. Hernandez-hoyos, and M. J. Bevan, Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response, J Exp Med, vol.203, issue.9, pp.2135-2143, 2006.

A. W. Purcell, J. Mccluskey, and J. Rossjohn, More than one reason to rethink the use of peptides in vaccine design, Nat Rev Drug Discov, vol.6, issue.5, pp.404-414, 2007.

R. Rastogi, J. K. Verma, A. Kapoor, G. Langsley, and A. Mukhopadhyay, Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania, J Biol Chem, vol.291, issue.28, pp.14732-14746, 2016.

R. Ravindran, K. Anam, B. C. Bairagi, B. Saha, N. Pramanik et al., Characterization of immunoglobulin G and its subclass response to Indian kala-azar infection before and after chemotherapy, Infect Immun, vol.72, issue.2, pp.863-870, 2004.

P. D. Ready, Leishmaniasis emergence in Europe, Euro Surveill, vol.15, issue.10, p.19505, 2010.

P. D. Ready, Epidemiology of visceral leishmaniasis, Clin Epidemiol, vol.6, pp.147-154, 2014.

W. H. Reece, M. Pinder, P. K. Gothard, P. Milligan, K. Bojang et al.,

K. E. Greenwood, K. P. Kester, J. Mcadam, A. V. Cohen, and . Hill, A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease, Nat Med, vol.10, issue.4, pp.406-410, 2004.

S. G. Reed, M. T. Orr, and C. B. Fox, Key roles of adjuvants in modern vaccines, Nat Med, vol.19, issue.12, pp.1597-1608, 2013.

S. Regina-silva, A. M. Feres, J. C. Franca-silva, E. S. Dias, E. M. Michalsky et al., Field randomized trial to evaluate the efficacy of the Leish-Tec(R) vaccine against canine visceral leishmaniasis in an endemic area of Brazil, Vaccine, vol.34, pp.2233-2239, 2016.

S. L. Reiner and R. M. Locksley, The regulation of immunity to Leishmania major, Annu Rev Immunol, vol.13, pp.151-177, 1995.

J. M. Requena, C. Alonso, and M. Soto, Evolutionarily conserved proteins as prominent immunogens during Leishmania infections, Parasitol Today, vol.16, issue.6, pp.246-250, 2000.

D. M. Resende, B. C. Caetano, M. S. Dutra, M. L. Penido, C. F. Abrantes et al., Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: correlation with IFN-gamma and cytolytic activity by CD8+ T cells, Vaccine, vol.26, issue.35, pp.4585-4593, 2008.

H. Rezvan, R. Rees, and S. Ali, Immunogenicity of MHC Class I Peptides Derived from Leishmania mexicana Gp63 in HLA-A2.1 Transgenic (HHDII) and BALB/C Mouse Models, Iran J Parasitol, vol.7, issue.4, pp.27-40, 2012.

D. S. Ridley, A. V. De-magalhaes, and P. D. Marsden, Histological analysis and the pathogenesis of mucocutaneous leishmaniasis, J Pathol, vol.159, issue.4, pp.293-299, 1989.

J. A. Rioux, F. Petter, A. Zahaf, G. Lanotte, R. Houin et al., Isolation of Leishmania major Yakimoff and Shokhor, 1914 (Kinetoplastida-Trypanosomatidae) in Meriones shawi-shawi (Duvernoy, 1842) (Rodentia-Gerbillidae) in Tunisia, Ann Parasitol Hum Comp, vol.61, issue.2, pp.139-145, 1986.

U. Ritter, J. Mattner, J. S. Rocha, C. Bogdan, and H. Korner, The control of Leishmania (Leishmania) major by TNF in vivo is dependent on the parasite strain, Microbes Infect, vol.6, issue.6, pp.559-565, 2004.

M. G. Rittig and C. Bogdan, Leishmania-host-cell interaction: complexities and alternative views, Parasitol Today, vol.16, issue.7, pp.292-297, 2000.

D. Rivier, R. Shah, P. Bovay, and J. Mauel, Vaccine development against cutaneous leishmaniasis. Subcutaneous administration of radioattenuated parasites protects CBA mice against virulent Leishmania major challenge, Parasite Immunol, vol.15, issue.2, pp.75-84, 1993.

K. L. Rock, E. Reits, and J. Neefjes, Present Yourself! By MHC Class I and MHC Class II Molecules, Trends Immunol, vol.37, issue.11, pp.724-737, 2016.

K. L. Rock and L. Shen, Cross-presentation: underlying mechanisms and role in immune surveillance, Immunol Rev, vol.207, pp.166-183, 2005.

A. Rodriguez, A. Regnault, M. Kleijmeer, P. Ricciardi-castagnoli, and S. Amigorena, Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells, Nat Cell Biol, vol.1, issue.6, pp.362-368, 1999.

M. Roestenberg, E. Remarque, E. De-jonge, R. Hermsen, H. Blythman et al.,

S. Imoukhuede, O. Jepsen, B. Ofori-anyinam, C. H. Faber, M. Kocken et al., Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Alhydrogel, Montanide ISA 720 or AS02, PLoS One, vol.3, issue.12, p.3960, 2008.

M. Rossi and N. Fasel, How to master the host immune system? Leishmania parasites have the solutions!, Int Immunol, vol.30, issue.3, pp.103-111, 2018.

V. Rougeron, T. De-meeus, S. Ouraga, M. Hide, and A. L. Banuls, Everything you always wanted to know about sex (but were afraid to ask)" in Leishmania after two decades of laboratory and field analyses, PLoS Pathog, vol.6, issue.8, p.1001004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02401702

J. R. Ryan, A. M. Smithyman, G. H. Rajasekariah, L. Hochberg, J. M. Stiteler et al.,

. Martin, Enzyme-linked immunosorbent assay based on soluble promastigote antigen detects immunoglobulin M (IgM) and IgG antibodies in sera from cases of visceral and cutaneous leishmaniasis, J Clin Microbiol, vol.40, issue.3, pp.1037-1043, 2002.

R. Sachdeva, A. C. Banerjea, N. Malla, and M. L. Dubey, Immunogenicity and efficacy of single antigen Gp63, polytope and polytopeHSP70 DNA vaccines against visceral Leishmaniasis in experimental mouse model, PLoS One, vol.4, issue.12, p.7880, 2009.

D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to Leishmania major in mice, Nat Rev Immunol, vol.2, issue.11, pp.845-858, 2002.

B. Saffari and H. Mohabatkar, Computational analysis of cysteine proteases (Clan CA, Family Cl) of Leishmania major to find potential epitopic regions, Genomics Proteomics Bioinformatics, vol.7, issue.3, pp.87-95, 2009.

S. Saha, S. Mondal, R. Ravindran, S. Bhowmick, D. Modak et al., IL-10-and TGF-betamediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India, J Immunol, vol.179, issue.8, pp.5592-5603, 2007.

A. B. Salah, Y. Kamarianakis, S. Chlif, N. B. Alaya, and P. Prastacos, Zoonotic cutaneous leishmaniasis in central Tunisia: spatio temporal dynamics, Int J Epidemiol, vol.36, issue.5, pp.991-1000, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00871665

N. Salaiza-suazo, P. Volkow, R. Tamayo, H. Moll, R. Gillitzer et al., Treatment of two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana modifies the immunohistological profile but not the disease outcome, Trop Med Int Health, vol.4, issue.12, pp.801-811, 1999.

F. Sallusto, J. Geginat, and A. Lanzavecchia, Central memory and effector memory T cell subsets: function, generation, and maintenance, Annu Rev Immunol, vol.22, pp.745-763, 2004.

F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, issue.6754, pp.708-712, 1999.

N. Santarem, R. Silvestre, J. Tavares, M. Silva, S. Cabral et al., Immune response regulation by leishmania secreted and nonsecreted antigens, J Biomed Biotechnol, issue.6, p.85154, 2007.

S. Santos-cda, V. Boaventura, C. Cardoso, N. Tavares, M. J. Lordelo et al., , 2013.

, IFNgamma(+)-mediated parasite killing in human cutaneous leishmaniasis, J Invest Dermatol, vol.133, issue.6, pp.1533-1540

A. Sassi, H. Louzir, A. Ben, M. Salah, A. Mokni et al., Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia, Clin Exp Immunol, vol.116, issue.1, pp.127-132, 1999.
URL : https://hal.archives-ouvertes.fr/pasteur-00878412

B. M. Scorza, E. M. Carvalho, and M. E. Wilson, Cutaneous Manifestations of Human and Murine Leishmaniasis, Int J Mol Sci, vol.18, issue.6, 2017.

P. Scott, D. Artis, J. Uzonna, and C. Zaph, The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development, Immunol Rev, vol.201, pp.318-338, 2004.

P. Scott, P. Natovitz, R. L. Coffman, E. Pearce, and A. Sher, Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens, J Exp Med, vol.168, issue.5, pp.1675-1684, 1988.

P. Scott and F. O. Novais, Cutaneous leishmaniasis: immune responses in protection and pathogenesis, Nat Rev Immunol, vol.16, issue.9, pp.581-592, 2016.

P. Scott, E. Pearce, A. W. Cheever, R. L. Coffman, and A. Sher, Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease, Immunol Rev, vol.112, pp.161-182, 1989.

R. A. Seder, P. A. Darrah, and M. Roederer, T-cell quality in memory and protection: implications for vaccine design, Nat Rev Immunol, vol.8, issue.4, pp.247-258, 2008.

A. Sette, M. Newman, B. Livingston, D. Mckinney, J. Sidney et al., Optimizing vaccine design for cellular processing, MHC binding and TCR recognition, vol.59, pp.443-451, 2002.

A. Sette and J. Sidney, Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism, Immunogenetics, vol.50, issue.3-4, pp.201-212, 1999.

N. Seyed, T. Taheri, C. Vauchy, M. Dosset, Y. Godet et al., Immunogenicity evaluation of a rationally designed polytope construct encoding HLA-A*0201 restricted epitopes derived from Leishmania major related proteins in HLA-A2/DR1 transgenic mice: steps toward polytope vaccine, PLoS One, vol.9, issue.10, p.108848, 2014.

N. Seyed, F. Zahedifard, S. Safaiyan, E. Gholami, F. Doustdari et al., In silico analysis of six known Leishmania major antigens and in vitro evaluation of specific epitopes eliciting HLA-A2 restricted CD8 T cell response, PLoS Negl Trop Dis, vol.5, issue.9, p.1295, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00787351

V. H. Shargh, M. R. Jaafari, A. Khamesipour, I. Jaafari, S. A. Jalali et al., Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis, Vaccine, vol.30, issue.26, pp.3957-3964, 2012.

J. Sidney, M. F. Del-guercio, S. Southwood, V. H. Engelhard, E. Appella et al., Several HLA alleles share overlapping peptide specificities, J Immunol, vol.154, issue.1, pp.247-259, 1995.

J. Sidney, B. Peters, N. Frahm, C. Brander, and A. Sette, HLA class I supertypes: a revised and updated classification, BMC Immunol, vol.9, p.1, 2008.

E. Silva, L. F. Ferreira, M. Z. Hernandes, M. E. De-brito, B. C. De-oliveira et al., Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis, vol.7, p.327, 2016.

F. T. Silveira, R. Lainson, and C. E. Corbett, Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil: a review, Mem Inst Oswaldo Cruz, vol.99, issue.3, pp.239-251, 2004.

H. Sindermann and J. Engel, Development of miltefosine as an oral treatment for leishmaniasis, Trans R Soc Trop Med Hyg, vol.100, pp.17-20, 2006.

B. Singh and S. Sundar, Leishmaniasis: vaccine candidates and perspectives, Vaccine, vol.30, issue.26, pp.3834-3842, 2012.

O. P. Singh, K. Gidwani, R. Kumar, S. Nylen, S. L. Jones et al.,

. Sundar, Reassessment of immune correlates in human visceral leishmaniasis as defined by cytokine release in whole blood, Clin Vaccine Immunol, vol.19, issue.6, pp.961-966, 2012.

O. P. Singh and S. Sundar, Whole blood assay and visceral leishmaniasis: Challenges and promises, Immunobiology, vol.219, issue.4, pp.323-328, 2014.

M. Skwarczynski and I. Toth, Peptide-based synthetic vaccines, Chem Sci, vol.7, issue.2, pp.842-854, 2016.

J. E. Sokal, Editorial: Measurement of delayed skin-test responses, N Engl J Med, vol.293, issue.10, pp.501-502, 1975.

L. Soong, Modulation of dendritic cell function by Leishmania parasites, J Immunol, vol.180, issue.7, pp.4355-4360, 2008.

M. A. Souza, M. C. Castro, A. P. Oliveira, A. F. Almeida, L. C. Reis et al., American tegumentary leishmaniasis: cytokines and nitric oxide in active disease and after clinical cure, with or without chemotherapy, Scand J Immunol, vol.76, issue.2, pp.175-180, 2012.

D. Steverding, The history of leishmaniasis, Parasit Vectors, vol.10, issue.1, p.82, 2017.

W. R. Taylor, The classification of amino acid conservation, J Theor Biol, vol.119, issue.2, pp.205-218, 1986.

C. J. Thalhofer, Y. Chen, B. Sudan, L. Love-homan, and M. E. Wilson, Leukocytes infiltrate the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi, Infect Immun, vol.79, issue.1, pp.108-117, 2011.

V. Thomaz-soccol, E. S. Ferreira-da-costa, S. G. Karp, L. A. Letti, F. T. Soccol et al., Recent Advances in Vaccines Against Leishmania Based on Patent Applications, Recent Pat Biotechnol, vol.12, issue.1, pp.21-32, 2018.

V. Thomaz-soccol, G. Lanotte, J. A. Rioux, F. Pratlong, A. Martini-dumas et al., Monophyletic origin of the genus Leishmania Ross, Ann Parasitol Hum Comp, vol.68, issue.2, pp.107-108, 1903.

S. M. Todryk, A. A. Pathan, S. Keating, D. W. Porter, T. Berthoud et al., The relationship between human effector and memory T cells measured by ex vivo and cultured ELISPOT following recent and distal priming, Immunology, vol.128, issue.1, pp.83-91, 2009.

M. Tomiyama, M. Takahara, K. Egawa, and M. Nieda, Mature dendritic cells are superior to immature dendritic cells in expanding antigen-specific naive and memory CD8+ T cells, Anticancer Res, vol.24, issue.5C, pp.3327-3333, 2004.

E. Torres-guerrero, M. R. Quintanilla-cedillo, J. Ruiz-esmenjaud, and R. Arenas, Leishmaniasis: a review, F1000Res, vol.6, p.750, 2017.

T. Ueno, H. Tomiyama, and M. Takiguchi, Single T cell receptor-mediated recognition of an identical HIV-derived peptide presented by multiple HLA class I molecules, J Immunol, vol.169, issue.9, pp.4961-4969, 2002.

J. E. Uzonna, K. L. Joyce, and P. Scott, Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells, J Exp Med, vol.199, issue.11, pp.1559-1566, 2004.

J. E. Uzonna, G. Wei, D. Yurkowski, and P. Bretscher, Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease, J Immunol, vol.167, issue.12, pp.6967-6974, 2001.

E. M. Van-leeuwen, E. B. Remmerswaal, M. T. Vossen, A. T. Rowshani, P. M. Wertheimvan-dillen et al., Emergence of a CD4+CD28-granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection, J Immunol, vol.173, issue.3, pp.1834-1841, 2004.

G. Van-zandbergen, M. Klinger, A. Mueller, S. Dannenberg, A. Gebert et al.,

. Laskay, Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages, J Immunol, vol.173, issue.11, pp.6521-6525, 2004.

I. D. Velez, S. Del-pilar-agudelo, M. P. Arbelaez, K. Gilchrist, S. M. Robledo et al., Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: a randomized controlled trial, Trans R Soc Trop Med Hyg, vol.94, issue.6, pp.698-703, 2000.

S. Verma, R. Kumar, G. K. Katara, L. C. Singh, N. S. Negi et al., Quantification of parasite load in clinical samples of leishmaniasis patients: IL-10 level correlates with parasite load in visceral leishmaniasis, PLoS One, vol.5, issue.4, p.10107, 2010.

A. Vijayamahantesh, M. R. Amit, A. K. Dikhit, T. Singh, V. N. Venkateshwaran et al., Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects, Microbes Infect, vol.19, issue.6, pp.358-369, 2017.

E. Von-stebut, Y. Belkaid, T. Jakob, D. L. Sacks, and M. C. Udey, Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity, J Exp Med, vol.188, issue.8, pp.1547-1552, 1998.

S. L. Waldrop, K. A. Davis, V. C. Maino, and L. J. Picker, Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis, J Immunol, vol.161, issue.10, pp.5284-5295, 1998.

Y. Wang, G. Wang, D. Zhang, H. Yin, and M. Wang, Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1, Parasit Vectors, vol.6, p.125, 2013.

U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen et al., A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study, Breast Cancer Res Treat, vol.119, issue.3, pp.673-683, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535420

P. Wilhelm, U. Ritter, S. Labbow, N. Donhauser, M. Rollinghoff et al., Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF, J Immunol, vol.166, issue.6, pp.4012-4019, 2001.

T. M. Williams, Human leukocyte antigen gene polymorphism and the histocompatibility laboratory, J Mol Diagn, vol.3, issue.3, pp.98-104, 2001.

F. Woelbing, S. L. Kostka, K. Moelle, Y. Belkaid, C. Sunderkoetter et al., Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity, J Exp Med, vol.203, issue.1, pp.177-188, 2006.

M. Wolfl and P. D. Greenberg, Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells, Nat Protoc, vol.9, issue.4, pp.950-966, 2014.

V. , C. H. Costa, and N. ,

S. R. Peters, E. C. Maruyama, J. De-brito, and I. K. Santos, Vaccines for the leishmaniases: proposals for a research agenda, PLoS Negl Trop Dis, vol.5, issue.3, p.943, 2011.

G. Wortmann, L. Hochberg, H. H. Houng, C. Sweeney, M. Zapor et al., Rapid identification of Leishmania complexes by a real-time PCR assay, Am J Trop Med Hyg, vol.73, issue.6, pp.999-1004, 2005.

C. Y. Wu, J. R. Kirman, M. J. Rotte, D. F. Davey, S. P. Perfetto et al., Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo, Nat Immunol, vol.3, issue.9, pp.852-858, 2002.

W. Wu, L. Huang, and S. Mendez, A live Leishmania major vaccine containing CpG motifs induces the de novo generation of Th17 cells in C57BL/6 mice, Eur J Immunol, vol.40, issue.9, pp.2517-2527, 2010.

D. Xu, H. Liu, M. Komai-koma, C. Campbell, C. Mcsharry et al., CD4+CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice, J Immunol, vol.170, issue.1, pp.394-399, 2003.

D. M. Yang, M. V. Rogers, and F. Y. Liew, Identification and characterization of host-protective T-cell epitopes of a major surface glycoprotein (gp63) from Leishmania major, Immunology, vol.72, issue.1, pp.3-9, 1991.

C. Zaph, J. Uzonna, S. M. Beverley, and P. Scott, Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites, Nat Med, vol.10, issue.10, pp.1104-1110, 2004.