U. Buck and F. Huisken, Infrared spectroscopy of size-selected water and methanol clusters, Chem. Rev, vol.100, pp.3863-3890, 2000.

A. Fujii, «Hydrogen bond network structures of protonated short-chain alcohol clusters, Phys. Chem. Chem. Phys, vol.20, pp.14971-14991, 2018.

H. C. Chang, «hydrogen-bond rearrangement and intermolecular Proton transfer in Protonated Methanol Clusters, » Israel J. Chem, vol.39, pp.231-243, 1999.

S. Wei, «Metastable unimolecular and collision-induced dissociation of hydrogenbonded clusters: evidence for intracluster molecular rearrangement and the structure of solvated protonated complexes, J. Am. Chem. Soc, vol.113, pp.1960-1969, 1991.

T. Shimamori, «Stepwise internal energy change of protonated methanol clusters by using the inert gas tagging, J. Phys. Chem. A, vol.120, pp.9203-9208, 2016.

G. Guillon, Reflet de la physique, vol.61, 2019.

E. Uggerud, Properties and reactions of protonated molecules in the gas phase. Experiment and theory, vol.11, pp.389-430, 1992.

M. Katada, «Temperature and Size Dependence of Characteristic Hydrogen-Bonded Network Structures with Ion Core Switching in Protonated (Methanol)6-10, p.1

, Mixed Clusters: A Revisit, J. Phys. Chem. A, vol.121, pp.5399-5413, 2017.

O. Kostko, «Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol?Water Clusters, J. Phys. Chem. A, vol.112, pp.9555-9562, 2008.

U. Lohmann, Possible Aerosol Effects on Ice Clouds via Contact Nucleation, » J. Atmos. Sci, vol.59, pp.647-656, 2002.

D. Stolzenburg, «Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range, Proc. Natl. Acad. Sci. USA, vol.115, pp.9122-9127, 2018.

J. Almeida, «Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, » Nature, vol.502, pp.359-363, 2013.

J. Fan, «Substantial convection and precipitation enhancements by ultrafine aerosol particles, » Science, vol.359, pp.411-418, 2018.

H. Gordon, Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation,» Proc. Natl. Acad. Sci. USA, vol.113, pp.12053-12058, 2016.

C. Frege, «Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation, Atmos. Chem. Phys, vol.18, pp.65-79, 2018.

Y. Sato, «Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model, Nature Comm, vol.9, p.985, 2018.

M. Kulmala, «How particules nucleate and grow, » Science, vol.302, pp.1000-1001, 2003.

R. Zhang, «Nucleation and Growth of Nanoparticles in the Atmosphere, Chem. Rev, vol.112, pp.1957-2011, 2012.

A. Saxon and D. Diaz-sanchez, Air pollution and allergy: you are what you breathe, vol.6, pp.223-226, 2005.

M. Kulmala, «Direct observation of atmospheric aerosol nucleation, » Science, vol.339, pp.943-946, 2013.

J. Merikanto, «Impact of nucleation on global CCN, Atmos. Chem. Phys, vol.9, pp.8601-8616, 2009.

S. H. Lee, «Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere, » Science, vol.301, pp.1886-1889, 2003.

F. Yu and R. P. Turco, «Ultrafine aerosol formation via ion mediated nucleation, Geophys. Res. Lett, vol.27, pp.883-886, 2000.

A. A. Lushnikov and M. Kulmala, «Flux-matching theory of particle charging, Phys. Rev. E, vol.70, pp.464131-0464139, 2004.

P. M. Winkler, «Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles, » Science, vol.319, pp.1374-1377, 2008.

V. Vaida and . Perspective, Water cluster mediated atmospheric chemistry, J. Chem. Phys, vol.135, pp.209011-0209018, 2011.

T. D. Märk, «New gas phase inorganic ion cluster species and their atmospheric implications, Nature, vol.285, pp.392-393, 1980.

F. Berthias, «Proton Migration in Clusters Consisting of Protonated Pyridine Solvated by Water Molecules, Chem. Phys. Chem, vol.16, pp.3151-3155, 2015.

L. Feketeová, «Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation

P. Bertier, Study of solvated molecular ion stability in the gas-phase: cooling and irradiation, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01710261

I. Braud, «Attachment of Water and Alcohol Molecules onto Water and Alcohol Clusters, J. Phys. Chem. A, vol.119, pp.6017-6023, 2015.

J. Po?tulka, «Proton transfer from pinene stabilizes water clusters, Phys. Chem. Chem. Phys, vol.21, pp.13925-13933, 2019.

C. Walsh, «First detection of gas-phase methanol in a protoplanetary disk, Astrophys. J. Lett, vol.823, 2016.

G. A. Olah, Hydrocarbon Derivatives, and Ions, vol.138, pp.1717-1722, 2016.

M. Goulart, «Electron ionization of helium droplets containing C60 and alcohol clusters, Phys. Chem. Chem. Phys, vol.19, pp.24197-24201, 2017.

R. Garrod, «Are gas-phase models of interstellar chemistry tenable? The case of methanol, » Faraday Discuss, vol.133, pp.51-62, 2006.

S. B. Charnley, «Interstellar, vol.448, pp.232-239, 1995.

B. Farizon, «Multiple H3 + fragment production in single collision of fast Hn + clusters with He atoms, Z. Phys. D Atoms, Molecules and Clusters, vol.33, pp.53-57, 1995.

T. Oka, H. Interstellar, and ». , Chem. Rev, vol.113, pp.8738-8761, 2013.

E. Herbst and W. Klemperer, «The Formation and Depletion of Molecules in Dense Interstellar Clouds, Astrophys. J, vol.185, pp.505-534, 1973.

T. Hama and N. Watanabe, Surface Processes on Interstellar Amorphous Solid Water: Adsorption, Diffusion, Tunneling Reactions, and Nuclear-Spin Conversion, vol.113, pp.8783-8839, 2013.

U. Nagashima, «Ab initio and Monte Carlo study of the structure and stability of H3 + (H2)n (n = 3-16),», J. Phys. Chem, vol.96, 1992.

M. Farizon, «Structure and energetics of hydrogen clusters. Structures of H + 11 and H + 13. Vibrational frequencies and infrared intensities of the H + 2n+1 clusters (n=2-6)

, Chem. Phys, vol.96, 1992.

P. Kebarle, Higher-Order Reactions-Ion Clusters and Ion Solvation,» Ion-Molecule Reactions, vol.1, pp.315-362, 1972.

K. Hiraoka, P. Kebarle, and . Energetics, Stabilities, and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5 + (CH4)n-1 + CH4 = CH5 + (CH4)n for = 1-5, J. Am. Chem. Soc, vol.97, pp.4179-4183, 1975.

Y. K. Lau, Thermodynamics and kinetics of the gas-phase reactions H3O + (H2O)n-1 + water = H3O + (H2O)n, vol.104, pp.1462-1469, 1982.

P. Kebarle, «Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase, J. Am. Chem. Soc, vol.89, pp.5753-5757, 1967.

A. Witt, «Microsolvation of Protonated Methane: Structures and Energetics of CH5 + (H2)n,», J. Phys. Chem. A, vol.112, pp.12510-12517, 2008.

N. Lee, «The properties of clusters in the gas phase. IV. Complexes of H2O and HNOx clustering on NOx, J. Chem. Phys, vol.72, 1980.

M. Masamura, Ab initio molecular orbital study on the structures and energetics of CH3OH(H2O)n and CH3SH(H2O)n in the gas phase, vol.22, pp.125-131, 2001.

Y. Tamenori, «Hydrogen bonding in methanol clusters probed by inner-shell photoabsorption spectroscopy in the carbon and oxygen K-edge regions, J. Chem. Phys, vol.128, p.124321, 2008.

G. Bruny, «A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: A high intensity mass-and-energy selected cluster beam, Rev. Sci. Instrum, vol.83, pp.133051-0133057, 2012.

G. Bruny, Production et caractérisation d'agrégats moléculaires protonés contenant un nombre donné de molécules d'eau auprès du dispositif DIAM, 2010.

C. Teyssier, «A novel "correlated ion and neutral time of flight" method: Event-byevent detection of neutral and charged fragments in collision induced dissociation of mass selected ions, Rev. Sci. Instrum, vol.85, pp.151181-0151187, 2014.

C. Teyssier, S. De-masse, and C. , Conception d'un analyseur à temps de vol et développement de la méthode d'analyse, 2012.

F. Berthias, «Measurement of the velocity of neutral fragments by the "correlated ion and neutral time of flight" method combined with "velocity-map imaging, Rev. Sci. Instrum, vol.88, pp.831011-08310112, 2017.

F. Berthias, «Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems, » Rev. Sci. Instrum, vol.89, pp.131071-0131079, 2018.

F. Berthias, Thermalisation dans une nanogoutte d'eau, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01430562

J. C. Jiang, «Infrared spectra of H + (H2O)5-8 clusters: Evidence for symmetric proton hydration, J. Am. Chem. Soc, vol.122, pp.1398-1410, 2000.

«. Roentdek and . Mcp,

G. , «A multidimensional unfolding method based on Bayes theorem, Nucl. Instr. and Meth. in Phys. Res. A, vol.362, pp.487-498, 1995.

G. , «Improved iterative Bayesian unfolding,» ArXiv10100632 Phys, 2010.

G. , Bayesian reasoning in data analysis: a critical introduction, 2003.

F. Berthias, «Sequential evaporation of water molecules from protonated water clusters: measurements of the velocity distributions of the evaporated molecules and statistical analysis, Phys. Chem. Chem. Phys, vol.20, pp.18066-18073, 2018.

B. L. Peko, T. M. Stephen, ;. , H. , and H. , Absolute detection efficiencies of low energy H, vol.171, pp.597-604, 2000.

Y. Zhao, «The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functionnals and systematic testing of four M06-class functionals and 12 other function, » Theor. Chem. Account, vol.120, pp.215-241, 2008.

M. J. Frisch, «Gaussian, p.2013

J. P. Merrick, «An evaluation of harminic vibrational frequency scale factors, J. Phys. Chem. A, vol.111, pp.11683-11700, 2007.

Y. Zhao and D. G. Truhlar, «Density functionals with broad applicability in chemistry, Acc. Chem. Res, vol.41, pp.157-167, 2008.

F. Calvo, «Collision-induced evaporation of water clusters and contribution of momentum transfer,» Eur, Phy. J. D, vol.71, pp.3-7, 2017.

M. Marciante and F. Calvo, «Modelling infrared action spectra of protonated water clusters, Mol. Simul, vol.40, pp.176-184, 2014.

H. Abdoul-carime, «Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell-Boltzmann Statistic versus Non-Ergodic Events, Angew. Chem. Int. Ed, vol.54, pp.14685-14689, 2015.

S. Hwang and D. S. Chung, «Calculation of the Solvation Free Energy of the Proton in Methanol, Bull. Korean Chem. Soc, vol.26, pp.589-593, 2005.

J. L. Kuo, «Theoretical Analyses of the Morphological Development of the Hydrogen Bond Network in Protonated Methanol Clusters, J. Phy. Chem. A, vol.111, pp.9438-9445, 2007.

J. J. Fifen, «Structures of protonated methanol clusters and temperature effects, J. Chem. Phys, vol.138, pp.1843011-18430112, 2013.

Y. C. Li, «Hydrogen-bonded ring closing and opening of protonated methanol clusters H + (CH3OH)n (n = 4-8) with the inert gas tagging, Phy. Chem. Chem. Phys, vol.17, pp.22042-22053, 2015.

F. Remacle and R. D. Levine, «An electronic time scale in chemistry, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.6793-6798, 2006.

«. Network,

V. Wysocki, «Internal energy-distributions of isolated ions after activation by various methods, Int. J. Mass. Spectrom. Ion Process, vol.75, pp.181-208, 1987.

E. P. Grimsrud and P. Kebarle, «Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether, and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc, vol.95, pp.7939-7943, 1973.

M. S. El-shall, «Reactions and Thermochemistry of Protonated Methanol Clusters Produced by Electron Impact Ionization, J. Phys. Chem, vol.96, pp.2045-2051, 1992.

L. M. Bass, «Ion-Molecule Association Reactions: Reaction Sequences Initiated by CH3OH2+ in CH3OH; Experiment and Theory, J. Am. Chem. Soc, vol.105, pp.7024-7033, 1983.

E. Bruzzie, Binding energies determined from kinetic energy release measurements following the evaporation of single molecules from the molecular clusters H + (H2O)n, H + (NH3)n and H + (CH3OH)n, Int. J. M. Spectrom, vol.345, pp.160-166, 2013.

M. Iraqi and C. Lifshitz, «Studies of ion clusters of atmospheric importance by tandem mass spectrometry. Neat and mixed clusters involving methanol and water, Int. J. M. Spectrom. Ion. Process, vol.88, pp.45-57, 1989.

F. Berthias, «Maxwell-Boltzmann versus non-ergodic events in the velocity distribution of water molecules evaporated from protonated water nanodroplets, J. Chem. Phy, vol.149, pp.1-8, 2018.

I. Antcheva, «ROOT -AC++ framework for petabyte data storage, statistical analysis and visualization, Computer Phys. Com, vol.180, pp.2499-2512, 2009.

S. Morgan, «Reactions of Methanol Clusters following Multiphoton Ionization, J. Am. Chem. Soc, vol.111, pp.3841-3845, 1989.

S. T. Graul and R. R. Squires, «A flowing afterglow-triple quadrupole study of the mechanisms and intermediates in the gas-phase reactions of CH3OH2 + with CH3OH *, Int. J. Mass Spectrom. and Ion Proc, vol.81, pp.183-202, 1987.

G. Bouchoux and N. Choret, Methanol in the Gas-phase: an Ab Initio Molecular Orbital Study,» Rapid Comm, vol.11, pp.1799-1807, 1997.

C. Hillebrand, «Theoretical Model Calculations of the Proton Affinities of Aminoalkanes, Aniline, and Pyridine, J. Phy. Chem, vol.100, pp.9698-9702, 1996.

K. Ruusuvuori, «Proton affinities of candidates for positively charged ambient ions in boreal forests,» Atomos, Chem. Phys, vol.13, pp.10397-10404, 2013.

E. P. Hunter and S. L. Lias, «Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, vol.27, pp.413-656, 1998.