R. H. Brown and A. Al-chalabi, Amyotrophic lateral sclerosis, N. Engl. J. Med, vol.377, pp.162-172, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02922002

C. Lagier-tourenne, M. Polymenidou, and D. W. Cleveland, TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration, Hum. Mol. Genet, vol.19, pp.46-64, 2010.

D. Dormann, ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import, EMBO J, vol.29, pp.2841-2857, 2010.

Z. C. Zhang and Y. M. Chook, Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS), Proc. Natl. Acad. Sci. USA, vol.109, pp.12017-12021, 2012.

D. Dormann and C. Haass, TDP-43 and FUS: a nuclear affair, Trends Neurosci, vol.34, pp.339-348, 2011.

T. Nakaya and M. Maragkakis, Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity, Sci. Rep, vol.8, p.15575, 2018.

D. M. Baron, Quantitative proteomics identifies proteins that resist translational repression and become dysregulated in ALS-FUS, Hum. Mol. Genet, vol.28, pp.2143-2160, 2019.

J. C. Mitchell, Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age-and dosedependent fashion, Acta Neuropathol, vol.125, pp.273-288, 2013.

J. Nijssen, L. H. Comley, and E. Hedlund, Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol, vol.133, pp.863-885, 2017.

J. Lenzi, ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons, Dis. Models Mech, vol.8, pp.755-766, 2015.

R. De-santis, FUS mutant human motoneurons display altered transcriptome and microRNA pathways with implications for ALS pathogenesis, Stem Cell Rep, vol.9, pp.1450-1462, 2017.

R. De-santis, Mutant FUS and ELAVL4 (HuD) aberrant crosstalk in amyotrophic lateral sclerosis, Cell Rep, vol.27, 2019.

C. Braccia, V. Tomati, E. Caci, N. Pedemonte, and A. Armirotti, SWATH label-free proteomics for cystic fibrosis research, J. Cyst. Fibros, vol.18, pp.501-506, 2019.

S. Pletscher-frankild, A. Pallejà, K. Tsafou, J. X. Binder, and L. J. Jensen, Diseases: text mining and data integration of disease-gene associations, Methods, vol.74, pp.83-89, 2015.

M. Naumann, Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis, Ann Clin Transl Neurol, 2019.

C. Münch, Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS, Neurology, vol.63, pp.724-726, 2004.

C. Wu, Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis, Nature, vol.488, pp.499-503, 2012.

V. Pensato, TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations, J. Neurol, vol.262, pp.1376-1378, 2015.

B. N. Smith, Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis, Sci. Transl. Med, vol.9, p.9157, 2017.

A. Nicolas, Genome-wide analyses identify KIF5A as a novel ALS gene, Neuron, vol.97, pp.1268-1274, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02345947

M. Ku?ma-kozakiewicz, B. Ka?mierczak, A. Chudy, B. Gajewska, and A. Bara?czyk-ku?ma, Alteration of motor protein expression involved in bidirectional transport in peripheral blood mononuclear cells of patients with amyotrophic lateral sclerosis, Neurodegener. Dis, vol.16, pp.235-244, 2016.

M. E. Umoh, A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain, EMBO Mol. Med, vol.10, pp.48-62, 2018.

P. A. Randazzo, The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton, Proc. Natl. Acad. Sci. USA 97, pp.4011-4016, 2000.

P. González-pérez, Novel mutation in VCP gene causes atypical amyotrophic lateral sclerosis, Neurology, vol.79, pp.2201-2208, 2012.

, Scientific RepoRtS |, vol.10, p.11827, 2020.

R. De-santis, Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector, Stem Cell Res, vol.29, pp.189-196, 2018.

Q. Huang, SWATH enables precise label-free quantification on proteome scale, Proteomics, vol.15, pp.1215-1223, 2015.

G. Rosenberger, A repository of assays to quantify 10,000 human proteins by SWATH-MS, Sci. Data, vol.1, p.140031, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02619322

D. R. Rosen, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.362, pp.59-62, 1993.

M. Ku?ma-kozakiewicz, Dynactin Deficiency in the CNS of Humans with Sporadic ALS and Mice with Genetically Determined Motor Neuron Degeneration, Neurochem. Res, 2013.

H. Patzke and L. Tsai, Cdk5 sinks into ALS, Trends Neurosci, vol.25, pp.8-10, 2002.

L. Corrado, A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient, Neurobiol. Aging, vol.32, issue.552, pp.1-6, 2011.

W. Liu, Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis, Curr. Neurovasc. Res, vol.10, pp.222-230, 2013.

E. Taskesen, Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS, Sci. Rep, vol.7, p.8899, 2017.

D. D'-andrea, L. Grassi, M. Mazzapioda, and A. Tramontano, FIDEA: a server for the functional interpretation of differential expression analysis, Nucleic Acids Res, vol.41, pp.84-88, 2013.