S. Carreira, J. Goodall, L. Denat, M. Rodriguez, P. Nuciforo et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev, vol.20, pp.3426-3439, 2006.

Y. Cheli, M. Ohanna, R. Ballotti, and C. Bertolotto, Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigment Cell Melanoma Res, vol.23, pp.27-40, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530740

Y. Cheli, S. Giuliano, T. Botton, S. Rocchi, V. Hofman et al., Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, vol.30, pp.2307-2318, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530763

Y. Cheli, S. Giuliano, N. Fenouille, A. M. Hofman, V. Hofman et al., Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, vol.31, pp.2461-2470, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02530643

R. A. Cairns, I. S. Harris, and T. W. Mak, Regulation of cancer cell metabolism, Nat Rev Cancer, vol.11, pp.85-95, 2011.

O. Warburg, On respiratory impairment in cancer cells, Science, vol.124, pp.269-270, 1956.

S. Ganapathy-kanniappan and J. F. Geschwind, Tumor glycolysis as a target for cancer therapy: progress and prospects, Molecular cancer, vol.12, p.152, 2013.

R. Haq, J. Shoag, P. Andreu-perez, S. Yokoyama, H. Edelman et al.,

, Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF, Cancer Cell, vol.23, pp.302-315, 2013.

F. Vazquez, J. H. Lim, H. Chim, K. Bhalla, G. Girnun et al., PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress, Cancer Cell, vol.23, pp.287-301, 2013.

E. Currie, A. Schulze, R. Zechner, T. C. Walther, R. V. Farese et al., Cellular fatty acid metabolism and cancer, Cell metabolism, vol.18, pp.153-161, 2013.

S. A. Morad and M. C. Cabot, Ceramide-orchestrated signalling in cancer cells, Nat Rev Cancer, vol.13, pp.51-65, 2013.

K. Ferlinz, G. Kopal, K. Bernardo, T. Linke, J. Bar et al., Human acid ceramidase: processing, glycosylation, and lysosomal targeting, Biochim Biophys Acta, vol.276, pp.1174-1188, 2001.

J. C. Cheng, A. Bai, T. H. Beckham, S. T. Marrison, C. L. Yount et al.,

, Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse, J Clin Invest, vol.123, pp.4344-4358, 2013.

S. Elojeimy, X. Liu, J. C. Mckillop, A. M. El-zawahry, D. H. Holman et al., Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Molecular therapy : the journal of the American Society of, Gene Therapy, vol.15, pp.1259-1263, 2007.

A. E. Mahdy, J. C. Cheng, J. Li, S. Elojeimy, W. D. Meacham et al., Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer, Molecular therapy : the journal of the American Society of Gene Therapy, vol.17, pp.430-438, 2009.

E. Ruckhaberle, U. Holtrich, K. Engels, L. Hanker, R. Gatje et al., Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer, Climacteric : the journal of the International Menopause Society, vol.12, pp.502-513, 2009.

, ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer, Molecular oncology, vol.9, pp.58-67, 2015.

J. H. Park and E. H. Schuchman, Acid ceramidase and human disease, Biochim Biophys Acta, vol.1758, pp.2133-2138, 2006.

C. Bonet, S. Giuliano, M. Ohanna, K. Bille, A. M. Lacour et al., Aurora B is regulated by the mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells, J Biol Chem, vol.287, pp.29887-29898, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02530635

S. Giuliano, Y. Cheli, M. Ohanna, C. Bonet, L. Beuret et al.,

, Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas, Cancer Res, vol.70, pp.3813-3822, 2010.

M. Lai, N. Realini, L. Ferla, M. Passalacqua, I. Matteoli et al.,

, Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells, Scientific reports, vol.7, p.7411, 2017.

M. Ohanna, S. Giuliano, C. Bonet, V. Imbert, V. Hofman et al.,

, Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS), Genes Dev, vol.25, pp.1245-1261, 2011.

J. Reinhardt, J. Landsberg, J. L. Schmid-burgk, B. B. Ramis, T. Bald et al., MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy, Cancer Res, vol.77, pp.4697-4709, 2017.

M. R. Webster, M. Xu, K. A. Kinzler, A. Kaur, J. Appleton et al., Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells, Pigment Cell Melanoma Res, vol.28, pp.184-195, 2015.

M. Canel, A. Serrels, M. C. Frame, and V. G. Brunton, E-cadherin-integrin crosstalk in cancer invasion and metastasis, J Cell Sci, vol.126, pp.393-401, 2013.

F. Vesuna, P. Van-diest, J. H. Chen, and V. Raman, Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer, Biochem Biophys Res Commun, vol.367, pp.235-241, 2008.

F. Wang, J. R. Van-brocklyn, L. Edsall, V. E. Nava, and S. Spiegel, Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors, Cancer Res, vol.59, pp.6185-6191, 1999.

A. Desch, E. A. Strozyk, A. T. Bauer, V. Huck, V. Niemeyer et al., Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A, EBioMedicine, vol.181, pp.63-75, 2012.

J. Goodall, S. Carreira, L. Denat, D. Kobi, I. Davidson et al., Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells, Cancer Res, vol.68, pp.7788-7794, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350760

L. Larribere, C. Hilmi, M. Khaled, C. Gaggioli, K. Bille et al., The cleavage of microphthalmia associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis, Genes Dev, vol.19, pp.1980-1985, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-02531076

A. H. Merrill, M. C. Sullards, J. C. Allegood, S. Kelly, and E. Wang, Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry, Methods, vol.36, pp.207-224, 2005.

, WM3912 (middle) and WM8 (right) melanoma cells transfected with a control (siCtl) or two different ASAH1 (siASAH1#1 and siASAH1#2) siRNA. The proform (55 kDa) and the ? (40 kDa) active subunit are shown. The ? (14 kDa) active subunit is not recognized by the commercial antibody

, ASAH1 activity in the corresponding melanoma cells. Values represent mean + SD of two independent experiments

, TEM images of WM8 melanoma cells transfected with control or ASAH1 siRNA. Scale bars, vol.5

, Colony formation assay of melanoma cells transfected with control, p.1

(. , Colonies were stained with crystal violet after 14 days (representative micrographs are shown) and destained. The relative absorbance, which reflects the number of colony was measured on a spectrophotometer. Values represent mean + SD of three independent experiments

*. , , p.1

, WM3912 (middle) and WM8 (right) melanoma cells transfected with a control (siCtl), two ASAH1 (siASAH1#1 and siASAH1#2) or MITF (siMITF) siRNA. DAPI positive cells represent dying cells, FACS analysis of DAPI staining in 501mel (left)

, Figure S4: ASAH1 controls melanoma cell proliferation (A) Immunoblot to ASAH1 of WM3918 melanoma cell lines with forced expression of

, or ITG?V?5 neutralizing antibody (ITG?V?5) the last 5 hours. Cells positive for DAPI represent dying cells. Results are expressed in %

, Boyden chamber assays with WM8 and WM3912 melanoma cells transfected with control, ASAH1 or MITF siRNA in presence of control IgG (Ctl) or ITG?V?5 neutralizing antibody. Values represent mean + SD of three independent experiments