. Mhz, 59 (s(b), MeN(NH2)CH2CH2OH), 3.72 (m, 2H, NCH2CH2OH); 13 C { 1 H} NMR (CDCl3, 25°C, 75 MHz): ? (ppm) = 51.7 (NMe), vol.3, p.50

. Mhz, ? (ppm) = 66.4 (NH2NMe), 91.8 (NH2NMe). HRMS (ESI + ): [M+H] + m/z = 91.0866 (calcd

, IR (Golden Gate, ? (cm -1 )) = 3301 (m(b)), 2946 (m), 2836 (m), 2789 (m), 1607 (w), 1448 (m), 1364 (w), 1272 (w), 1079 (m), 1034 (m), 880 (m), 833 (w), 770 (m), 599 (w), 681 (w), 631 (w), 555(m), 538 (m), vol.480, p.472

, -Methylhydrazinyl)propan-1-ol (3b)

, mL, 526.4 mmol), yielding 53.26 g (97%) as a colorless liquid at R. T. (19 °C). 1 H NMR (CDCl3, 25 °C, 300 MHz): ??

. Hz,

, 13 C { 1 H} NMR (CDCl3, 25 °C, 75 MHz): ??(ppm)=29.6 (NCH2CH2CH2OH), vol.50

. Hrms-(esi-+,

, m/z=105.1022 (calcd.), 105.1025 (found)

, IR (Golden Gate, ? (cm -1 )) =3300 (m(b)), 2944 (m), 2846 (m), 1609 (w), 1450 (w), 1377 (w), 1219 (w), 1058 (m), 969 (w), 930 (w), 822 (w), 750 (m), 695 (m), 676 (m), 659 (m), 634 (m), 624 (m), 582 (m), 568 (m), 481 (m), vol.466, p.456

, -Methylhydrazinyl)butan-1-ol (3c)

, 35.4 mmol), yielding 4.59 g (92%) as a yellow liquid at R. T. (21°C). 1 H NMR (CDCl3, 25 °C, 300 MHz): ??(ppm)=1.67 (m, 4H, NCH2CH2CH2CH2OH), vol.2

. Hrms-(esi-+-),

, -Methylhydrazinyl)pentan-1-ol (3d)

, Compound prepared from 5-chloropentan-1-ol (1.06 mL, 8.2 mmol), yielding 1.06 g (98%) as a colorless liquid at R. T. (21°C). 1 H NMR (CDCl3, p.300

. Mhz, ??(ppm)=1.41 (m, 2H, NCH2CH2CH2CH2CH2OH), 1.57 (m, 4H, NCH2CH2CH2CH2CH2OH), vol.2

, C { 1 H} NMR (CDCl3, 25 °C, 75 MHz): ??(ppm)=23.5 (NCH2CH2CH2CH2CH2OH), vol.27

. Hrms-(esi-+-),

, -Methylhydrazinyl)hexan-1-ol (3e) Compound prepared from 6-chlorohexan-1-ol (1.02 mL, 7.3 mmol) yielding 1.05 g (98%) as a colorless liquid at R. T. (21°C). 1 H NMR (CDCl3, 25 °C, 300 MHz): ??(ppm) = 1.36 (m, 4H, NCH2CH2CH2CH2CH2CH2OH), 1.53 (m, 4H, NCH2CH2CH2CH2CH2CH2OH), 2.43 (t, 2H, NCH2CH2CH2CH2CH2CH2OH, J=7.5 Hz), vol.2

. Hrms-(esi-+-),

, General procedure for the synthesis of hydrazines 3f and 3g

, The reaction crude was then evaporated under reduced pressure, to get rid of water and residual MMH, and it was diluted in acetonitrile to precipitate salts which were filtered off. Solvent was evaporated under reduced pressure, leading to pure hydrazine. 2-(1-Methylhydrazinyl)ethan-1-amine (3f) Compound prepared from 2-chloroethylamine hydrochloride, An inert Argon atmosphere was set-up inside a thermostated double-jacketed vessel, MMH (8eq) was then introduced into it and the temperature was maintained 20°C

, H2NN(Me)CH2), 25 °C, 50 MHz): ? (ppm)=20.0 (CH2NH2), 63.4 (NH2N(Me)CH2), vol.49

, HRMS (ESI + ): [M+H] + m/z=90.1026 (calcd.), 90.1032 (found)

, = 3282 (w(b)), 2947 (w), 2880 (w), 2843 (w), 2791 (w), 1603 (w), 1449 (w), 1361 (w), 1326 (w), 948 (w), vol.877, p.761

, Td (onset) = 223°C; ISI (BAM, constant energy) > 50 J. 3-(1-Methylhydrazinyl)propan-1-amine (3g) Compound prepared from 3-chloropropylamine hydrochloride (2.00 g, 15.4 mmol) yielding 1.06 g (67%) as an orange liquid at R. T. (18°C). 1 H NMR (CDCl3, 25 °C, 300 MHz): ??(ppm) = 1.65 (quint, Tb (onset) = 136°C

, Et2O): ?max (nm) = 244, ?2 (nm) = 302

, According to the synthesis procedure described above for hydroxyalkyl hydrazines 3a to 3e, hydrazine 5 was prepared from 1-Azido-3-chloropropan-2-ol (10.8 g, 79.7 mmol, see SI for synthesis procedure details) yielding 11.3 g (98%) as a pale yellow liquid at R. T. (16 °C). d (16.3°C) =1.1493; 1 H NMR (D2O, 25 °C, 400 MHz): ? (ppm)=2.49 (s, 3H, NMe), 2.64 (d, 2H, DSC (-50 to 250°C, 5°C/min): Td (onset) = 152.9°C; ISI (BAM, constant energy) > 50 J. Synthesis of 1-Azido-3-(1-methylhydrazinyl)propan-2-ol

. Hrms-(esi-+,

, + m/z=146.1036 (calcd.), 146.1037 (found)

, IR (Golden gate????(cm -1 )) = 3313 (w(b)), 2946 (w), 2842 (w), 2094 (s), 1603 (w), 1447 (m), 1273 (m), 1073 (m), 1028 (w), 930 (m), 900 (w), 873 (w), 823 (m), 661 (m), 555 (m), vol.528, p.459

. Uv-(etoh, ?2 (nm) = 283; DSC (Medium pressure Steel crucible, -50 to 400°C, 5°C/min): Td (onset) = 139.9°C; ISI (BAM, constant energy) > 50 J. Keywords: bishydrazines ? functionalized hydrazines ? scalable synthesis ? monomethylhydrazine ? energetic materials, ?max (nm) =, vol.223

T. M. Klapötke, High Energy Density Materials, pp.85-121, 2007.

J. Eymann, , 2020.

L. Joucla, A. Dhenain, C. Darwich, J. Eymann, and G. Jacob, , pp.3085376-3085377, 2020.

J. Hogsett and V. Matthews, , 1968.

J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc, vol.84, issue.1, pp.16-24, 1962.

W. P. Jencks and J. Carriuolo, J. Am. Chem. Soc, vol.82, issue.7, pp.1778-1786, 1960.

E. Buncel and I. Um, Tetrahedron, vol.60, pp.7801-7825, 2004.

H. Böhme and F. Martin, Arch. Pharm, vol.307, issue.4, pp.272-277, 1974.

L. Joucla, A. Dhenain, and J. Eymann, , vol.3078968, 2019.

B. Porath, P. Rademacher, R. Boese, and D. Bläser, Z. Für Naturforschung B, vol.57, issue.4, pp.365-376, 2002.

A. Dhenain, , 2016.

H. Delalu, C. Duriche, J. Berthet, and P. L. Gars, , pp.2846646-2846647, 2004.

E. G. Gharakhanian and T. J. Deming, Biomacromolecules, vol.16, pp.1802-1806, 2015.

, de; b) AFNOR, éd. Matériaux énergétiques de défense. Sécurité, vulnérabilité. Sensibilité au choc -Epreuve au mouton de choc BAM, 2007.

, United states, Dept. of the Air Force, Liquid Propellant Handling, Storage, and Transportation, vol.161, 1973.

V. Forquet, C. Sabaté, H. Chermette, G. Jacob, E. Labarthe et al., Chemistry an Asian Journal, vol.11, issue.5, pp.730-744, 2016.

T. Gilloux, C. Darwich, L. Joucla, G. Jacob, E. Labarthe et al., proc. New Trends in Research of Energetic Materials, pp.662-671, 2014.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

J. Izmaylov, G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada et al., , 2010.

J. W. Ochterski, Thermochemistry in Gaussian, 2000.

J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys, vol.110, issue.6, pp.2822-2827, 1999.

). V. Forquet, C. G. Darwich, E. Jacob, and H. Labarthe, Delalu in proc, New Trends in Research of Energetic Materials, pp.586-598, 2012.

P. J. Linstrom and W. G. Mallard, NIST Chemistry Webbook), National Institute of Standards and Technology, 20899.

, Handbook of Chemistry and Physics online)

T. M. Donovan, C. H. Shomate, and W. R. Mcbride, J. Phys. Chem. B, vol.64, issue.2, pp.281-282, 1960.

D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow et al., J. Phys. Chem. Ref. Data, vol.11, pp.1-407, 1982.

). S. Gordon, B. J. Mcbride, ;. S. Gordon, B. J. Mcbride, ;. S. Gordon et al., computer program for complex Chemical Equilibrium Calculations (CEC71) 1971, NASA SP-273; b), CEC71 1988, vol.71, p.1311, 1994.

L. G. Cole and E. C. Gilbert, J. Am. Chem. Soc, vol.73, pp.5423-5427, 1951.