

Acoustic enrichment in wildlife passages under railways improves their use by amphibians

Guillaume Testud, Clément Fauconnier, Dorothée Labarraque, Thierry

Lengagne, Quentin Le Petitcorps, Damien Picard, Claude Miaud

▶ To cite this version:

Guillaume Testud, Clément Fauconnier, Dorothée Labarraque, Thierry Lengagne, Quentin Le Petitcorps, et al.. Acoustic enrichment in wildlife passages under railways improves their use by amphibians. Global Ecology and Conservation, 2020, 24, pp.e01252. 10.1016/j.gecco.2020.e01252. hal-02975324

HAL Id: hal-02975324 https://univ-lyon1.hal.science/hal-02975324

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Global Ecology and Conservation Acoustic enrichment in wildlife passages under railways improves their use by amphibians --Manuscript Draft--

nuscript Number:	GECCO-D-20-00039R2
cle Type:	Research Paper
words:	Transport infrastructure; Tunnels; Mitigation evaluation; Acoustic orientation
responding Author:	Claude Miaud Ecole Pratique des Hautes Etudes Paris, FRANCE
at Author:	Claude Miaud
ler of Authors:	Claude Miaud
	Guillaume Testud
	Clément Fauconnier
	Dorothée Labarraque
	Thierry Lengagne
	Quentin Le Petitcorps
	Damien Picard
stract:	Linear transport infrastructure can impact wildlife directly or indirectly, and amphibians are particularly affected. In some cases, mitigation measures – such as tunnels below the linear transport infrastructure – are implemented, but an evaluation of their effectiveness is often lacking, especially for small animals such as amphibians. Few studies have focused on crossing behaviour in underpasses, yet this information may be crucial to improve mitigation measures. In this study, we conducted experiments in three tunnels below a high-speed railway with individually marked amphibians (great crested newt Triturus cristatus , marbled newt Triturus marmoratus , alpine newt Ichthyosaura alpestris , fire salamander Salamandra salamandra , spined toad Bufo spinosus , agile frog Rana dalmatina and edible/pool frog Pelophylax kl. esculentus/lessonae) which were released at the entrance of tunnels varying in length. Behaviours (e.g. completed crossing, U-turn, not moving, and stay) and crossing speed were recorded. R. dalmatina , S. salamandra and T. cristatus (but not B. spinosus) exhibited crossing rate differences between tunnels 21 m and 40 m in length. More individuals performed "complete crossing" through the shorter tunnel. The crossing speed of the S. Salamandra and T. cristatus did not differ between the tunnels of different lengths. In a second experiment, we evaluated the effect of acoustic enrichment on the crossing calls of syntopic anuran species in the tunnels. P. kl esculentus/lessonae exhibited a large increase in complete crossings and in speed. T. cristatus showed an increase in tunnel complete crossing (but not speed) in one of the acoustically enhanced tunnels. These results indicate that acoustic enrichment can improve the crossing of underpasses. This low cost and easily implementable method could help to inform the design of wildlife passages as mitigation measures for impacted amphibian populations, though more experiments on the effect of tunnel characteristics on amphibian behaviour would be

Manuscript File

1 1	Acoustic enrichment in wildlife passages under railways improves their
2 3	
4 2 5 6	use by amphibians
7 3 8	Guillaume Testud ^a , Clément Fauconnier ^a , Dorothée Labarraque ^b , Thierry Lengagne ^c ,
9 4 10 11	Quentin Lepetitcorps ^a , Damien Picard ^d and Claude Miaud ^a
12	5
13 14	 Biogeography and vertebrate ecology,PSL University, UMR 5175 CEFE, EPHE, 1919 route de Mende,
15 16	734293 Monpopellier, France
17 8 18	^b Egis Structures & Environnement, 33-43 avenue Georges Pompidou, 31130 Balma, France
19 9 20	^c Laboratoire d'écologie des hydrosystèmes naturels et anthropisés, UMR CNRS 5023 3, rue Raphaël
21 10	Dubois - Bât. Darwin C F-69622 Villeurbanne Cedex France
22 11 23	^d Laboratoire d'études environnementales des systèmes anthropisés, Université d'Angers, 40 Rue de
24 12 25 26 13	Rennes, 49035 Angers, France
27 28 14 29	ABSTRACT
30 15 31	Linear transport infrastructure can impact wildlife directly or indirectly, and
32 16	amphibians are particularly affected. In some cases, mitigation measures – such as
 33 55 56 57 58 59 60 61 62 	tunnels below the linear transport infrastructure – are implemented, but an
63 64 65	1

1 2		
3		
4 5		
6		
7		
8 9		
34		
35	18	evaluation of their effectiveness is often lacking, especially for small animals such as
36	19	amphibians. Few studies have focused on crossing behaviour in underpasses, yet this
37		
38	20	information may be crucial to improve mitigation measures. In this study, we
39	21	conducted experiments in three tunnels below a high-speed railway with 40
	22	individually marked amphibians (great crested newt Triturus cristatus, marbled newt
42 43	22	Triturus marmoratus, alpine newt Ichthyosaura alpestris, fire salamander Salamandra
44	24	salamandra, spined toad Bufo spinosus, agile frog Rana dalmatina and edible/pool
fro	g	
45		
46	25	<i>Pelophylax kl. esculentus/lessonae</i>) which were released at the entrance of tunnels 47
26	vary	ing in length. Behaviours (e.g. completed crossing, U-turn, not moving, and stay)
48		
49	27	and crossing speed were recorded. <i>R. dalmatina, S. salamandra</i> and <i>T. cristatus</i> (but not
50	28	<i>B. spinosus</i>) exhibited crossing rate differences between tunnels 21 m and 40 m in 51
52 53	29	length. More individuals performed "complete crossing" through the shorter tunnel.
54	30	The crossing speed of the S. salamandra and T. cristatus did not differ between the
	31	tunnels of different lengths. In a second experiment, we evaluated the effect of 32 acoustic enrichment on the crossing behaviour of one frog and three newt species
	by 3	³ broadcasting a soundtrack of mating calls of syntopic anuran species in the
	tunr	nels.
	34	Pelophylax kl exhibited a large increase in complete crossings and in speed. T. cristatus
	35	showed an increase in tunnel complete crossings (but not speed) in one of the
	36	acoustically enhanced tunnels. These results indicate that acoustic enrichment can
	37	improve the crossing of underpasses. This low cost and easily implementable

- 57 58 59 60 61

1 2 3 4 5 6 7 8 9		
	38	method could help to inform the design of wildlife passages as mitigation measures 39 for impacted amphibian populations, though more experiments on the effect of 40 tunnel characteristics on amphibian behaviour would be valuable.
10 11 13 14 15 16 17	41 42 43 44	<i>Keywords:</i> Transport infrastructure, Tunnels, Mitigation evaluation, Acoustic 12 orientation
18 19 20 21 22 23 24 25 26	45	
27 28 29 30 31 32 33 34		
35 36 37 38 39 40 41 42 43		
44 45 55 56 57 58 59		
60 61 62 63 64 65		3

1. Introduction

	48	Global passenger and freight travel is expected to double from its level in 2010 in
10	49	coming decades, and it is projected that around the world an additional 25 million
11 12 13	50	kilometres of paved roads and 335,000 kilometres of railway tracks will be needed
14 15 16	51	(Dulac, 2013). The effects of linear transport infrastructure (LTI) such as roads and
17 18 19	52	railways on animals have long been known (Barbour, 1895) and have been
20 21 22	53	extensively studied (e.g. Rytwinski and Fahrig, 2015). The construction of LTI in
23 24 25	54	landscapes can directly alter the physical environment by changing the habitat
26 27 28	55	surface as well as its connectivity, impacting animals through direct mortality and
56 57 58 59 60 61 62		4
63 64 65		4

1 2 3 4 5 6 7 8		
9 29 ! 30	56	behaviour changes in land use and movements (Jackson and Griffin, 2000;
31 32 33	57	Trombulak and Frissell, 2000). The resulting decrease in population size, landscape
34 35 36	58	connectivity and dispersal can significantly alter the viability of populations
37 38 39	59	(Eigenbrod et al., 2008; Forman and Alexander, 1998; Glista et al., 2009; Hamer et al.,
40 41 42	60	2014; Lesbarrères and Fahrig, 2012).
43 44 45	61	By affecting connectivity, landscape fragmentation caused by LTI can alter the
46 47 48	62	two main types of animal movements: (1) migration (i.e. seasonal movements
49 50 51	63	between different landscapes at different times of an individual's lifecycle), and (2)
	64	dispersal (i.e. an individual's movement away from its birth area to reproduce in a
51	65	different population) (Joly, 2019; Ronce, 2007). As a consequence, it is not surprising
	66	that amphibians, which have a biphasic lifecycle (terrestrial and aquatic), are one of

the groups most affected by landscape fragmentation (Beebee, 2013; Cushman, 2006; 68Holderegger and Di Giulio, 2010).

Wildlife passages constructed for small vertebrates (often tunnels below railway tracks) aim to reduce the barrier effect and thus its alteration of population functioning (Beebee, 2013; Clevenger and Ford, 2010; Colino-Rabanal and Lizana, **71** 2012; Dodd et al., 2004; Hamer et al., 2014; Jarvis et al., 2019). However, while **72** evaluating the effectiveness of these structures for different species is crucial (Jarvis 18 73 et al., 2019; Lesbarrères and Fahrig, 2012), amphibian behaviour near and inside the 21 74 tunnels is rarely investigated (Matos et al., 2018; Testud and Miaud, 2018). Some 23 75 experiments have tested abiotic tunnel characteristics such as diameter and length 26 76 29 77 (Patrick et al., 2010), substrate (Lesbarrères et al., 2004; Trochet et al., 2019), and light, humidity and temperature (Bain et al., 2017). Biotic parameters (e.g. physiological **78**

1 2 3 4 5 6 7 8 9		
34 35 36 37	79	condition of amphibians, vegetation colonization of the tunnels) or social information
38 39 40	80	(e.g. presence of conspecific cues), on the other hand, have been little studied.
41 42	81	According to the chorus attraction hypothesis (Gerhardt and Huber, 2002),
43 44 45	82	amphibians may use the calls of conspecifics or other species for orientation (Buxton
46 47 48	83	et al., 2015; Diego-Rasilla and Luengo, 2007, 2004; James et al., 2015; Madden and
49 50 51	84	Jehle, 2017; Pupin et al., 2007; Swanson et al., 2007). For example, adult of marbled
52 53 54	85	newt Triturus marmoratus orientate to the calls of the natterjack toad Epidalea calamita
01	86	an experimental arena (Diego-Rasilla and Luengo, 2004). Wildlife managers have
	87 88	begun capitalizing on this acoustic attraction to lure animals to specific places by 10 11 92
	89	12 13 14
	90	15 93 16 17
55 56 57 58 59 60 61 62 63	91	18 9 4 7
64 65		

1 2 3 4 5	
6 7	
8 9 19	107
20	107
21 95 22 2	108
3 96	broadcasting vocalizations (Putman and Blumstein, 2019). In amphibians, acoustic
24 25 26 97	enrichment with conspecific chorus calls has been shown to improve the colonization
27 28 29 98	of new ponds by frogs and toads (Buxton et al., 2015; James et al., 2015). These
30 31	findings suggest that acoustic enrichment might be an interesting avenue to explore
32 99 33 34	to increase the effectiveness of wildlife passages.
35 100 36 37	The aim of this study was to evaluate the use of wildlife passages by
38 101 39	amphibians and investigate methods to improve their effectiveness. To this end we
40 41 102 42	studied the movement of seven European amphibian species (spined toad Bufo
43 103 44	spinosus, agile frog Rana dalmatina, edible/pool frogs Pelophylax kl. esculentus/lessonae,
45 46 104	fire salamander Salamandra salamandra, alpine newt Ichthyosaura alpestris, marbled
47 48 49 105	newt T. marmoratus and great crested newt Triturus cristatus), in underpasses below a
50 51	high-speed railway track in France by: (1) performing homing experiments to
52 53 106 54	compare their ability to cross tunnels of two lengths in the same location, and (2)
55 56 57 58 59 60 61 62	
63 64 65	8

- evalua ment by analysing different crossing behaviours and speed in tunnels with and ting without the broadcasting of anuran calls.
- the
- efficac 2. Materials and methods
- y of 2.1 Study area and wildlife crossing structures

acoust The study area was located in the region of Pays-de-la-Loire in northwestern France. ic Our focus was on three wildlife crossing structures constructed at different locations enrich under the same high-speed railway track. Tunnels 1 and 2 are separated by a distance of 800 m and are close to the town of Chantenay-Villedieu. Tunnel 3 is about 70 km (direct distance) from the other tunnels and is close to the town of Beaulieu111 sur-Oudon. The three tunnels consist of square concrete culvert of 1 m in width and 1 m in height (figure 1): in length, tunnel 1 is 21 m, tunnel 2 is 40 m and tunnel 3 is 18.5 m. Tunnels 1 and 2 are dry fauna-crossing structures installed for amphibians, while **113** tunnel 3 is a hydraulic structure that had a light trickle of water during the 14 114

1 2 3 4 5 6 7 8 9 15 16		
17 18 19	115	experimental period.
20 21 22	116	The tunnels were implemented in areas where previous inventories showed the
23 24 25	117	presence of many ponds and amphibian migration between these ponds and
26 27 28	118	surrounding terrestrial habitats. The individuals used in the homing experiments
29	119 W	ere collected (in water and on land, see below) in the closed surrounding of the 30
31 32 33	120	tunnels (e.g. less than 500 m).
34 35 36	121	
37 38 39 40	122	2.2 Capture and marking of specimens
41 42	123	Specimens of seven species most representative of the local amphibian community
43 44 45	124	were captured for the study (<i>B. spinosus</i> , <i>S. salamandra</i> , <i>R. dalmatina</i> , <i>P.</i> kl.
46 47 48	125	esculentus/lessonae, I. alpestris, T. marmoratus and T. cristatus). The seven species were
55 56 57 58 60 61 62 63 64		10
64 65		

1 2 3 4 5 6 7 8 9		
49 50 51	126	captured using methods that depended on the species. <i>B. spinosus</i> and <i>S. salamandra</i>
52 53 54	127	were collected on land before reproduction (from February to early April in 2018 and
	128	2019) during nocturnal transects along railway track fences. Individuals of <i>R</i> .
	129 130	<i>dalmatina</i> were caught in water at the beginning of the species' reproductive period (from February to early March 2019) with minnow traps (mesh 4 mm). <i>P.</i> kl.
	131	<i>esculentus/lessonae</i> (consisting of the edible frog <i>P</i> . kl. <i>esculentus</i> and the pool frog <i>P</i> .
		132 lessonae: hereafter, Pelophylax kl.) were caught in ponds before egg-laying (mid-
		May
10	133	May 2018 and 2019) manually or with a dip-net at night with the help of a flashlight. <i>I</i> .
	133 134	
11 12 13		2018 and 2019) manually or with a dip-net at night with the help of a flashlight. <i>I.</i>
11 12 13 14 15	134	2018 and 2019) manually or with a dip-net at night with the help of a flashlight. <i>I. alpestris</i> and <i>T. marmoratus</i>) were caught in ponds during their reproductive period
11 12 13 14 15 16 17 18 19	134 135	2018 and 2019) manually or with a dip-net at night with the help of a flashlight. <i>I.</i> <i>alpestris</i> and <i>T. marmoratus</i>) were caught in ponds during their reproductive period (mid-May 2019) with minnow traps. <i>T. cristatus</i> individuals were caught in ponds

- 60 61 62 63

- 65

1 2 3 4 5 6 7 8 9 24 25		
26 27 28	139	The captured specimens were marked with transponders (PIT-tags, $1.4 \ge 8$ mm,
29	140 WE	eight 34.2 mg, Biolog-Tiny REF 10268 [R02-0717]), consisting of electronic chips 30
31 32 33	141	packaged in a 'biocompatible' glass ampoule that meet international standards for
34 35 36	142	animal identification (ISO 11784/11785). The animals were anaesthetized with 2%
37 38 39	143	xylocaine (ointment). The PIT-tags were injected subcutaneously at the intersection
40 41 42	144	of the belly and flank with a PIT-tag injector (Biolog-Tiny REF 10268 [R0 955]. They
43 44 45	145	were housed in several opaque plastic tanks ($0.80 \times 0.40 \times 0.25$ m) with moist forest
46 47 48	146	litter. They were kept outside, close to the capture site, in a shaded place with an
49	147 am	bient temperature ranging from 5°C (night) to 15°C (day). The time spent in 50 $$
51 53	captiv	ity between capture and the experiment was about $1-2$ days for newts, toads 52 148
54	149	and frogs. As the number of <i>S. salamandra</i> captured in a night could be low, some of
	150	these individuals were housed for up to 10 days. The results obtained with

- 56 57 58 59 60 61 62 63

8		
9	151	individuals housed 1 to 5 days and individuals housed 6-10 days were similar
	152	(χ 2 test, P-value=0.47). The individuals were released at the place of capture the day
	153	after the experiment. Authorization to catch amphibians was provided by the
	154	regional government of the study area (Regional Environment, Housing and
10	155	Planning Agency of Sarthe, Mayenne and Ille-et-Vilaine, interprefectoral derogation
11 12 13	156	from the prohibition to capture and transport specimens of protected animal species,
14 15	157	29 May 2017). The protocols used in this study were approved by the Ethical
16		
17	158	Committee of UMR 5175 CEFE (Montpellier, France), decision of the committee held
18		
19		
20	159	on 27 June 2017.
21		
22		
	160	
24 25		
	161	2.3 Experiments
27	101	
28		
29	162 Be	efore an experiment, each individual was identified by a hand-held RFID reader 30
31	163	(reader RS1-F1, Biolog-ID©, reading distance = 4 to 10 cm). One experimenter with a
32	105	(reader hor rif) biolog ib 0) reading abtailee - rio ro ent). One experimenter white
33		
55		
56		
57		
58 59		
60		
61		
62		
63		13
64		
65		

1 2 3 4 5 6 7 8	
9 34 164 35 36	reader was positioned at the entrance and another at the exit of the tunnel. The tested
371653839	individual was released at the entrance of the tunnel and the exact time recorded
40 166 41 42	(min). If the individual did not move in the tunnel after 10 min, it was returned to a
43 167 44 45	new storage tank. Individuals that entered the tunnel but then did a U-turn and
46 168 47 48	exited at the entrance were returned to a new storage tank after noting the exact time
49 169	of exit. If the individual crossed the tunnel, the experimenter at the exit noted the 50
51 ind :	ividual's number and the exact time of exit and then returned it to a new storage 52 170
54 171 172	tank. The experiments were conducted over 22 nights from March 2018 to May 2018 173
	and from February to May 2019 (tunnel 1 =7 nights, tunnel 2 = 7 nights, tunnel 3 = 8
174	nights). They were performed after sunset (from about 7:00pm to 9:30pm). During a
175 10	test, an individual was released at the tunnel entrance every 1 min. In the case of the
11 176 12 13	presence of a returning individual (animals within 50 cm of the entrance and moving
14 177 55 56 57 58 59 60 61 62 63	towards the tunnel entrance), the next release was stopped until the capture of this
64 65	

1 2 3 4 5 6 7 8 9 15 16		
17 18 19	178	individual. The experiment was stopped 4 h 30 min after the last tested individual
20 21 22	179	was released at the entrance to start its crossing. The individuals that did not exit the
23 24 25	180	tunnel – either at the entrance or at the exit – were then collected by an experimenter,
26 27 28 29 30	181 182	identified and their position in the tunnel was recorded.
31 32 33	183	2.4 Crossing behaviour
34 35 36	184	The crossing behaviour of specimens in the tunnels was described by four main
37 38 39	185	behavioural categories: (1) 'Not moving': individuals that did not move in the tunnel
40 41 42	186	after 10 min, (2) 'U-turn': individuals that entered the tunnel but did a U-turn and
43 44 45	187	exited at the entrance, (3) 'Stay': individuals that did not exit at the entrance or at the
46 47 48	188	exit by the end of the experiment, and (4) 'Complete crossing': individuals that
55 56 57 58 59 60 61 62 63 64 65		15

1 2 3 4 5 6 7 8 9		
49	189 cro	ossed the tunnel to the exit. The proportions of each behaviour category were 50
51 53	calcul	ated as the number of individuals displaying the behaviour divided by the 52 190
54	191	number of individuals tested.
	192	Additionally, in two Urodela species (<i>T. cristatus</i> and <i>S. salamandra</i>), the
	193	crossing speed in tunnels 1 and 2 was evaluated for individuals that entirely crossed
	194	the passage. This was estimated by the length of the tunnel (in metres) divided by the
10	195	time taken to completely cross the tunnel (in minutes). The mean speeds between
	196	tunnels were compared with a Wilcoxon-Mann-Whitney test.
14 15 16	197	
17 18 19	198	2.5 Acoustic enrichment
20 21 22	199	In 2019, an acoustic enrichment experiment was performed during the crossing
23 24 25	200	experiments. In this test, we used a soundtrack of a mixed chorus of edible frog
55 56 57 58 60 61 62 63 64 65		16

1		
2 3		
4		
5 6		
7		
8		
9	204	Delayly law be exclusive and European tree from Units subsystem the true main an arise
26 27	201	Pelophylax kl esculentus and European tree frog Hyla arborea, the two main species
28		
29	202 US	ing mating calls in the ponds in our study area. The recordings were made with an 30
31 32 33	203	omnidirectional microphone (Sennheiser ME62/K6, flat frequency response between
3 /	204	20 Hz and 20 kHz) coupled with a Fostex FR2LE recorder. The signal was sampled at
34 35	204	20 Hz and 20 KHz) coupled whit a Postex PRZLE recorder. The signal was sampled at
36		
37	205	44.1 kHz with a 16-bit dynamic. Files were saved in .wav format. The stereo
38		
39	200	coundtrack was emitted using a D Jiv M240PT MP2 and is player connected to two
40 41	206	soundtrack was emitted using a D-Jix M349BT MP3 audio player connected to two
42		
43	207	loudspeakers (BOOM 2, Ultimate Ears). The loudspeakers were installed outside the
44		
45 46	208	tunnel, 10m from the exit and space 5m apart. The average amplitude of the signal
47	200	turner, for nom die exit and space on apart. The average amplitude of the signal
48		
49	209 en	nitted was set at 74.8 ± 0.8 dB with a Lutron SL-4001 sound level meter (mean ± SD, 50
51 53	1 m fr	rom the loudspeaker, C weighting, slow settings, re: 20 μ Pa). The number of 52 $$ 210 $$
54	211	individuals and the species tested in these experiments are provided in Table 1.
	212	
	213	2.6. Statistical analysis
	214	The proportion of each behaviour category was compared between tunnels (of
55		
56		
57		
58 59		
60		
61 62		
63		17
64		
65		

- 1 2 4 5 6 7 8 9

	215	different lengths and with or without acoustic enrichment) using the Fisher216
		Freeman-Halton test or χ^2 test (depending on the sample size for each behaviour
10	217	category). The mean speed of individuals that completely crossed a tunnel was
11 12 13	218	compared between tunnels with a Wilcoxon-Mann-Whitney test.
14 15 16	219	
17 18 19	220	3. Results
20 21 22	221	3.1 Crossing behaviour and speed in tunnels of different lengths
	222	In adult <i>T. cristatus</i> newts, the proportion of behaviour categories significantly
	223	differed between tunnel 1 and 2 (tunnel 1 N = 222; tunnel 2 N = 59, χ^2 test, p-value:
	224 0.0	0091). More 'complete crossings' and less 'U-turns' were observed in the shorter 30
31 32 33	225	tunnel (figure 2a). In juvenile <i>T. cristatus</i> newts, the proportion of behaviour
34 35 36	226	categories was not compared between tunnel 1 and 2 because of the low number of
55 56 57 58 59 60 61 62	227	individuals in tunnel 2 (tunnel 1 N = 16; tunnel 2 N = 3, figure 2b). In <i>S. salamandra</i>
63 64		18

1 2 3 4 5 6 7 8		
9 38 39		
40 41 42	228	adults, the proportion of behaviour categories also significantly differed between
43 44 45	229	tunnel 1 and 2 (tunnel 1 N = 69; tunnel 2 N = 32, Fisher-Freeman-Halton test, p-value:
46 47 48	230	0.00091). More 'complete crossings' and fewer 'stays' were observed in the shorter
49	231 tu	nnel (figure 2c). In adult <i>R. dalmatina</i> frogs, the proportion of behaviour categories 50
51 53	did n	ot differ between tunnel 1 and 2 (tunnel 1 N = 50; tunnel 2 N = 9, Fisher 52 232
54	233 Fr	eeman-Halton test p-value: 0.07). However, no 'complete crossings' and more 'U234
	tu	rns' were observed in the longer tunnel (figure 2d). In adult <i>B. spinosus</i> toads, the
	235	proportion of behaviour categories did not differ between tunnel 1 and 2 (tunnel 1 N
	236	= 5; tunnel 2 N = 14, Fisher-Freeman-Halton test, p-value: 0.5, figure 2e). This was
	237	also the case for juvenile <i>B. spinosus</i> toads (tunnel 1 N = 7; tunnel 2 N = 15, Fisher238
		Freeman-Halton test, p-value: 0.6, figure 2f).
10	239	According to the previous results, individuals (in <i>S. salamandra</i> and <i>T. cristatus</i>)
11 12 13	240	that completely crossed a tunnel allowed estimating a mean crossing speed. In <i>S</i> .
55 56 57 58 59 60 61 62 63		19
64 65		

1 2 3 4 5 6 7 8 9	
14 15 241 16 17	salamandra adults, the crossing speed did not differ between tunnel 1 and 2 (tunnel 1
18 242 19 20	N = 47; tunnel 2 N = 11, Wilcoxon-Mann-Whitney test, p-value: 0.71, figure 3). This
21 243 22	was also the case in <i>T. cristatus</i> adults (tunnel 1 N = 88; tunnel 2 N = 8, Wilcoxon-
23 244 24 25 26 245 27 28	Mann-Whitney test, p-value: 0.31, figure 3).
29 246 30 31	3.2 <i>Comparisons between species</i>
32 247 33 34	Behaviour categories observed in tunnels 1 and 2 in <i>T. cristatus</i> and <i>B. spinosus</i> adults
35 248 36 37	and juveniles, and in <i>S. salamandra</i> and <i>R. dalmatina</i> adults are shown in figure 2. Of
38 249 39 40	these species, we found that <i>T. cristatus</i> adults were the least likely to enter the
41 250 42	tunnels (figure 2a), while <i>S. salamandra</i> completed the most crossings (figure 2c), and
43 251 44 45 46	<i>R. dalmatina</i> did the most U-turns (figure 2c).
55 56 57 58 59 60 61 62 63 64 65	20

1 2 3 4 5 6 7 8 9		
47 48 49	252	Concerning crossing speed, T. cristatus adults crossed tunnel 1 more quickly
50 51 52	253	than <i>S. salamandra</i> adults (<i>T. cristatus</i> N = 88; <i>S. salamandra</i> N = 47, Wilcoxon-Mann-
53	254 W	hitney test, p-value: 0.043, figure 3). 54
	255	
	256	3.3 Acoustic enrichment in tunnels
	257	In juvenile <i>T. cristatus</i> newts (tunnel 1), the proportion of behaviour categories
	258	did not differ with or without acoustic enrichment (without N = 16; with N = 14,
	259	Fisher-Freeman-Halton test, p-value: 0.21, figure 4a). The number of juveniles that
10	260	completed crossings was too low to calculate the crossing speed (Table 1). In <i>T</i> .
11 12 13	261	cristatus adults (tunnel 1), the proportion of behaviour categories significantly
14 15 16	262	differed with and without acoustic enrichment (without enrichment N = 229; with
17 18 19	263	enrichment N = 46, χ^2 test p-value: 0.030). More 'complete crossings' and less 'U-
20 21 22	264	turns' were observed in the acoustically enriched tunnel (figure 4b). However, the
55 56 57 58 59 60 61 62 63		21
64 65		

1		
2 3		
4 5		
6		
7 8		
9		
23 24	265	crossing speed did not change (without enrichment N = 88; with enrichment N = 32,
24		
	266	Wilcoxon-Mann-Whitney test p-value: 0.63, figure 5). In tunnel 2, in adult T. cristatus
27 28		
29	267 n	ewts, the proportion of behaviour categories did not differ with or without acoustic 30
	268	enrichment (without N = 59; with N = 46, Fisher-Freeman-Halton test, test p-value:
32 33		
34	269	0.22, figure 4c), nor did enrichment change the crossing speed (without N = 8; with N
35		
36		
37	270	= 7, Wilcoxon-Mann-Whitney p-value: 1.0, figure 5). In tunnel 3, the proportion of
39		
	271	behaviour categories in adult <i>T. cristatus</i> newts did not differ with or without
41 42		
	272	acoustic enrichment (without N = 62; with N = 71, Fisher-Freeman-Halton test, test p-
44 45		
46	273	value: 0.57, figure 4d), nor did enrichment change the crossing speed (without $N =$
47 48		
	274	17; with N = 15, Wilcoxon-Mann-Whitney test p-value: 0.31, figure 5).
50	_, .	
51	275	In adult T manual (timpel 2) the properties of helperious actorogies
52 53	275	In adult <i>T. marmoratus</i> newts (tunnel 3), the proportion of behaviour categories
54		
	276	did not differ with or without acoustic enrichment (without N = 14; with N = 14,
55		
56 57		
58		

- 59 60 61 62 63

8 9		
)	277	Fisher-Freeman-Halton test, test p-value: 0.45, figure 4e). The number of individuals
		278 completely crossing the tunnels was too low to calculate crossing speed (Table 1).
	279	In <i>I. alpestris</i> adults (tunnel 3), the proportion of behaviour categories did not
10	280	differ with or without acoustic enrichment (without N = 36; with N = 30, Fisher-
11		
12 13 14	281	Freeman-Halton test, test p-value: 0.12, figure 4f). The number of individuals
	282	completely crossing the tunnels was too low to calculate crossing speed (Table 1).
	283	In <i>Pelophylax</i> kl. adults (tunnel 3), the proportion of behaviour categories
	284	significantly differed with and without acoustic enrichment (without enrichment N =
	285	228; with enrichment N = 35, χ^2 test, p-value: 1x10 ⁻¹³). The four categories showed
	286	marked changes in the enriched tunnel: only one individual did not move, only one
	287	individual stayed in the tunnel, and only one did a U-turn. The majority, 91% (N =
33 34	288	35), of the tested frogs completely crossed the enriched tunnel (Figure 4g). Moreover,
55 56 57 58 60 61 62		
63 64		23

1 2 3 4 5 6 7 8 9		
	289	the crossing speed in this tunnel was doubled (without N = 55; with N = 32,
38 39 40 41 42 43	290 291	Wilcoxon-Mann-Whitney test, p-value: 7.7 x10 ⁻⁷ , Figure 5).
44 45 46	292	4. Discussion
47 48 49	293	Various studies have demonstrated that linear transport infrastructure strongly alters
50 51 52	294	animal land use behaviour and movements (Jackson and Griffin, 2000; Trombulak
53 54	295	and Frissell, 2000). When LTI interrupts amphibian migration or dispersal, different
	296	mitigation methods have been implemented with varying efficacy (Colino-Rabanal
	297 298	and Lizana, 2012). Wildlife passages constructed specifically for small vertebrates such as amphibians can reduce direct mortality from LTI as well as its barrier effect,
	299	contributing to improve population viability (Beebee, 2013; Clevenger and Ford,
	300	2010; Dodd et al., 2004; Hamer et al., 2014; Jarvis et al., 2019). However, the
10	301	effectiveness of these mitigation measures has not been sufficiently assessed (Jarvis et
11	302	al., 2019; Lesbarrères et al., 2004; Pagnucco et al., 2012; Puky et al., 2007; Testud and
55 56 57 58 59 60 61 62 63 64 65		24

1 2 3 4 5 6 7 8 9 12 13		
14 15 16 17	303	Miaud, 2018; Woltz et al., 2008), especially for European newts (Matos et al., 2017).
18 19 20	304	Evaluating the behaviour of amphibians in tunnels is challenging (see a review
21 22 23	305	in Testud et al., 2019). The lack of behavioural data on small species crossing tunnels
24	306 is j	partly due to methodological issues (Weber et al., 2019). For example, camera traps 25
26 27 28	307	are widely used for movement tracking in tunnels (reviewed in Jumeau, 2017). The
29 30 31	308	detection rate can be low with amphibians (Pagnucco et al., 2012), but the current
32 33 34	309	increase in the quality of video traps make them usable with amphibians (Hobbs and
35 36 37	310	Brehme, 2017; Jarvis et al., 2019; Pomezanski and Bennett, 2018). Marking
38 39 40	311	amphibians with fluorescent pigments was used as a method to record continuous
41 42 43	312	tracks on the tunnel floor, but this method is limited in terms of the number of
44	313 in	dividuals that can be monitored and does not provide information on movement 45
55 56 57 58 59 60 61 62 63 64		25

1 2 3 4 5 6 7 8 9		
46 3 47 48	314	speed (Matos et al., 2019). A more promising method is PIT-tagging individuals and
49 3 50 51	315	tracking their movements with detectors installed in tunnels (Atkinson-Adams, 2015;
52 3 53 54	316	Testud et al., 2019).
	317	We used PIT-tagging and based our experiments on the concept of homing
	318	behaviour, i.e. the propensity of displaced amphibians to come back to the place of
	319	capture (Dole, 1972; Sinsch, 1987). We assumed that individuals captured on
		land 320 while migrating to a breeding place (this was the case for <i>S</i> .
		salamandra and B.
	321	spinosus) were in a suitable physiological condition to evaluate their terrestrial
10	322	movements in tunnels. In the case of the newts <i>T. cristatus, T. marmoratus and I.</i>
11 3 12 13	323	<i>alpestris,</i> these were caught in ponds at dates when they were reproductively active.
14 3 15 16	324	Newts caught in ponds can successfully return to the site of capture from
17 3 18 55 56 57 58 59 60 61 62 63	325	displacement distances of more than 100 m (e.g. Joly and Miaud, 1989; Twitty et al.,
64 65		

2		
3		
4		
5		
6		
7		
8		
9		
19		
20	326	1964). In future, it would also be interesting to perform similar homing experiments
21		
22		
23	327	to evaluate tunnel use with newts caught on land (i.e. before they enter the aquatic
24		
25		
26	328	phase).
27	520	
28		
	329	Our experimental design raised another issue about movement behaviour. The
30		
31		
32	330	specimens were released at the entrance of a tunnel every minute. We analysed the
33		
34		
35	331	data considering each specimen trajectory as independent; however, several
36		
37		
38	332	individuals (of the same species) were present in the tunnel and could potentially
39	552	individuals (of the sume species) were present in the further and could potentially
40		
	222	interact Newto can use specific and beterospecific information (e.g. density) to
41	333	interact. Newts can use specific and heterospecific information (e.g. density) to
42		
12	334	emigrate from ponds (Cayuela et al., 2018). Laboratory experiments showed that
	334	emigrate nom ponds (Caydela et al., 2010). Laboratory experiments showed that
44 45		
40		
46	335	juvenile T. cristatus can detect scents left on the substrate by conspecifics (Hayward et
47		
48		
10	336	al., 2000). However, the use of conspecific cues during migration on land remains
50	330	al., 2000). However, the use of conspectice eucs during inigration of fand remains
51		
	227	unter annual interestions and interesting and interesting and interesting and
	337	unknown. In anurans such as toads, intra- and inter-sexual interactions such as
55		
56		
57 58		
59		
60		
61		
62		
63		27
64		
65		

9 53		
54 3	338	couple forming, can potentially change the movement of migrating adults (e.g.
	339 340	Arntzen, 1999). In our experiments, 4 female and 17 male <i>B. spinosus</i> were tested, but we do not have information on their interactions. Lastly, water frogs, which travel
3	841	mainly by jumping, could also potentially influence conspecifics when crossing
3	342	tunnels. Nonetheless, despite the fact that certain complex behavioural interactions
3 10	843	may have occurred in the tunnels during the experiments, we can consider that these
11 3 4 12 13 14	44	were similar in all tunnels and tested conditions and so did not bias the comparisons.
15 3 4 16 17	45	Studies have tested how tunnel characteristics influence the crossing of
18 3 4 19 20	46	amphibians with 'experimental' tunnels (i.e. devices mimicking tunnels implemented
20 21 3 4 22	47	below LTIs). Tested characteristics include diameter (Patrick et al., 2010), length
23 3 4 24 25	48	(Patrick et al., 2010), substrate (Lesbarrères et al., 2004; Trochet et al., 2019), and light,
26 3 4 27 28	49	humidity and temperature (Bain et al., 2017). Our study was performed in 'real'
29 3 55 56 57 58 59 60 61 62	50	tunnels below a high-speed railway track; tunnels whose dimensions differed only in
63 64 65		28

2		
3 4		
5		
6		
7		
8 9		
30		
31		
	351	length. In experiments with two tunnels (21 m and 40 m long – both 1 m wide and 1
33		
34	252	m high) the longer length was found to impact the properties of complete grassings
35 36	352	m high), the longer length was found to impact the proportion of complete crossings
37		
38	353	by <i>S. salamandra</i> (from 68% to 34%), adult <i>T. cristatus</i> (from 38% to 14%) and <i>R.</i>
39		
40		
41	354	dalmatina (from 34% to 0%). No effect of length was observed for <i>B. spinosus</i> , but this
42		
12	255	result needs to be confirmed with a higher number of tested individuals. In other
43 44	355	result needs to be commined with a nigher number of tested marviduals. In other
45		
10	256	studies a mean crossing rate of 74.5% for the crosted new tand 80.6% for the smeath
46 47	356	studies, a mean crossing rate of 74.5% for the crested newt and 80.6% for the smooth
48		
49	357	newt (Lissotriton vulgaris) were observed in a 'real' tunnel 24 m in length and 0.5 m in
50	557	newe (200000000 ourguno) were observed interred taliner 21 in interrigitatie o.o in in
51		
52	358	diameter (Jarvis et al., 2019). About 38% of the individuals of three species of
53		
54		
	359	Australian frogs (<i>Limnodynastes peronii, Litoria aurea</i> and <i>L. latopalmata</i>) entering a
	360	tunnel 12 m long and 0.5 m wide crossed it completely (Hamer et al., 2014). In the
	361	California tiger salamander Ambystoma californiense, 51% of individuals completely
	362	crossed a 'real' tunnel 22 m in length and 0.25 m in diameter (Bain et al., 2017). In the
	363	same study, the crossing rate was not influenced by the relative humidity of the
55		
56		
57 58		
59		
60		
61 62		
62 63		29
64		
65		

1 2 3 4 5 6 7 8 9	
364 10	tunnel, though the mean speed of this salamander was 0.77 m/min in the dry tunnel
11 365 12 13	and 1 m/min in the wet tunnel (Bain et al., 2017). In the (Hamer et al., 2014) study,
14 366 15 16	Australian frogs had a mean speed of 0.8 m/min. In our experiments, adult T.
17 367 18 19	<i>cristatus</i> newts crossed the 21-m tunnel at a mean speed of 0.39 ± 0.03 m/min (N=88),
20 368 21 22	which was faster than the <i>S. salamandra</i> adults (mean speed = 0.29 ± 0.02 m/min,
23 369 24 25	N=47). The length of the crossed tunnels did not affect the speed of either <i>S</i> .
26 370 27 28	salamandra or T. cristatus.
29 371 30 31	When amphibians migrate or disperse and seek to orient themselves when
32 372 33 34	moving from point A to point B, they can use a redundant, multisensory orientation
35 373 36 37	system (Sinsch, 2006). This may include celestial information (Diego-Rasilla and
38 374 39 40	Luengo, 2002), magnetism (Diego-Rasilla, 2003; Diego-Rasilla et al., 2008, 2005;
41 375	Fischer et al., 2001; Phillips, 1986), and olfactory cues (Joly and Miaud, 1993). The
55 56 57 58 59 60 61 62 63 64 65	30

1 2 3 4 5 6 7 8 9 42		
43 44 45	376	chorus attraction hypothesis (Gerhardt and Huber, 2002) postulates that amphibians
47 48 49 50 51	377	can also use conspecific and heterospecific amphibian calls to locate a site of interest
	378	(Buxton et al., 2015; Diego-Rasilla and Luengo, 2007, 2004; James et al., 2015; Madden
	379	and Jehle, 2017; Pupin et al., 2007; Swanson et al., 2007). Even non-calling species
	380	such as newts can exhibit positive phonotaxis for sympatric anuran songs: adult
	381 382	marbled newts (<i>T. marmoratus</i>) orientate to the calls of the <i>E. calamita</i>) (Diego-Rasilla and Luengo, 2004). Adult palmate newts (<i>Lissotriton helveticus</i>) orientate to the calls
		383 of Iberian water frog <i>Pelophylax perezi</i>) (Diego-Rasilla and Luengo, 2007). Adult L.
	384	vulgaris orientate to the calls of the common toad (Bufo bufo) and European green
10	385	toad (<i>Bufotes viridis</i>) (Pupin et al., 2007). Adult <i>T. critatus</i> orientate to the call of the <i>B</i> .
11 12 13	386	<i>bufo,</i> but not to that of the sympatric common frog (<i>Rana temporaria</i>) (Madden and
14 15 16	387	Jehle, 2017). Similarly, the palmate newt <i>Lissotriton helveticus</i> did not orientate to <i>R</i> .
17	388	temporaria calls ((Diego-Rasilla and Luengo, 2007). This lack of response to the
55 56 57 58 59 60 61 62 63 64 65		31

1 2	
3	
4 5	
6 7	
8 9	
18	
19 20 389	common frog call was explained by the fact that the newt's breeding migration did
21	common nog can was explained by the fact that the new s biccomig inigration and
22 23 390	not overlap with the frog's calling period. These four cited studies were performed in
23 390 24	not overlap with the flog's cannig period. These four cited studies were performed in
25	our orige and all conditions arises are also around a Marry forwater disc have used a consti-
26 391 27	experimental conditions using circular arenas. Very few studies have used acoustic
28	
29 392 (enrichment to direct amphibians towards a target in nature. Of these, the 30
31 393	colonization of new ponds by the green and golden bell frog (Litoria aurea) was
32 33	
34 394	encouraged using acoustic enrichment (speakers with conspecific frog calls, James et
35 36	
37 395	al., 2015). Similarly, the Cope's gray treefrog (Hyla chrysoscelis) and the American
38 39	
40 396	toad (Anaxyrus americanus) colonized new habitats where conspecific chorus calls
41 42	
43 397	were broadcasted (Buxton et al., 2015).
44 45	
46 398	To our knowledge, no previous studies have been conducted on acoustic
47	
48 49 399	enrichment in natural environments with Urodela species, and particularly in the
50	entremient in natural environments while ofodeld species, and particularly in the
51	
55 56	
57 58	
59	
60 61	
62 63	32
64	
65	

9		
52 53 54	400	context of wildlife passages for both Anura and Urodela species. Enrichment
	401	increased the proportion and speed of <i>Pelophylax</i> spp. crossing the tunnel (conspecific
	402	call). In newts, broadcasting heterospecific calls resulted in <i>T. cristatus</i> adults
	403	completing more crossings and doing less U-turns in the 'enriched' tunnel 1 (the
	404	speed was unchanged). However, this difference was not observed in 'enriched'
	405	tunnels 2 and 3. For the marbled and alpine newts, no effect of acoustic enrichment
10	406	was observed on the proportion of crossings in tunnel 3. These divergent findings
11 12 13	407	suggest the effect of acoustic enrichment on the behaviour of newts in wildlife
	408	passages needs to be confirmed by testing more individuals and using other calls and
17 18 19 20	409 410	tunnel characteristics.
	411	5. Conclusion
27 28 55 56 57 58 59 60 61	412	The length of the tunnel probably influenced the proportion of complete crossings by
62 63 64 65		33

1 2 3 4 5 6 7 8 9		
29 30 31	413	the fire salamander and crested newt; previous studies have recommended limiting
32 33 34	414	the length of wildlife passages as much as possible (Patrick et al., 2010). Construction
	415	constraints can result in rather long tunnels, and increasing the width or diameter
	416	(while keeping costs reasonable) in order to increase the use by amphibians still
	417	remains to be tested (Colino-Rabanal and Lizana, 2012; Puky, 2003). The effects of other
43 44 45	418	characteristics (humidity, light, substrate, etc.) also need more investigation, with
46 47 48	419	careful consideration of interspecific differences (Baguette and Dyck, 2007; Lesbarrères
49 50 51	420	et al., 2010; Puky et al., 2007).
	421	Studies have shown that acoustic enrichment is successful at attracting amphibians to
	422	newly created aquatic sites. In this study, our experiments demonstrated the potential
	423	of this method in improving the effectiveness of wildlife passages: both the water frog
	424	(when conspecific calls were broadcast) and the crested newt (when heterospecific
55 56 57 58 59 60 61 62 63 64 5		34

- 425 calls were broadcast) performed better in tunnel 1 (21 m) however, they did not 426complete more crossings in the other two acoustically enriched tunnels.

	427	These results could be extended with further studies focusing on the type of
10 11		
	428	emitted calls, e.g. mixing heterospecific vocalizations with conspecific vocalizations of
13		
14 15	429	the target species (Putman and Blumstein, 2019), frequency and sound amplitude, the
16	425	the target species (1 unital and blumstent, 2012), nequency and sound amplitude, the
17	420	distance and position of loudeneelens in the turnel state As including loudeneelens in
18 19	430	distance and position of loudspeakers in the tunnel, etc. As including loudspeakers in
20		
21 22	431	a wildlife passage could be costly (in terms of installation, risk of degradation, etc.),
23		
24	432	acoustic enrichment could be planned for specific periods (the best timing remains to 25
26	433	be evaluated): for example, to allow the establishment or reinforcement of a breeding
27 28		
	121	migration path. Another option could be natural acoustic enrichment, e.g. by creating
29 30	434	inigration path. Another option could be natural acoustic enficitment, e.g. by creating
31		
32 33	435	breeding sites colonized by a community of anurans close to the wildlife passage. As
34		
	436	the effectiveness and durability of acoustic playback on attracting animals for wildlife
36 37		
55		
56 57		
58		
59		
60		
61 62		
63		35
64		
65		

	445	Acknowledgements
54	444	
53		
52	443	this paper.
50	442 pe	rsonal relationships that could have appeared to influence the work reported in 51
49		
48	441	The authors declare that they have no known competing financial interests or
47		
46	440	Declaration of competing interest
45		
-	439	
42 43		
41	438	this in wildlife passages for small fauna.
40		
39		
38	437	management is poorly known, further investigation would be valuable in evaluating
9		
8		
6 7		
5		
4		
3		
1 2		
1		

8 9		
9	446	We would like to thank Marie-Aurélia Sabatte, Eva Garcia, Agathe Legrand,
	447	Anthony Martin, Camille Clowez, Philippe Geniez, Emelie Segrestan, Lynda
	448	Farineau, Annick Lucas, François Le Hérissé, Julien Maziere, Margot Piccinin and
	449	Adrien Parais for their field participation. We are also grateful to the Janvier and
	450	Fred and Arnaud for their hospitality. Philippe Cordier (Biolog-id©) offered us
10 11 12	451	valuable RFID assistance, and Laura Benestan, Aurelie Coulon and the 'Movement'
	452	group at the Centre of Functional and Evolutionary Ecology (CEFE) gave
15	453	constructive advice. This work was supported by the French National Research 16
17 18	454	Agency (ANR), the French engineering group Egis (CIFRE grant number 2017/0212)
19 20	455	and the French construction group Eiffage.
21 22 23	456	
24 25	457	References:
26 27	458 Evol	
28	459	
29	460 461	
31		
32	463	determinant for dispersal. Landsc. Ecol. 22, 1117–1129. https://doi.org/10.1007/s10980-007-9108-4
56		
57 58		
50 59		
60		
61 62		
63		37
64		
65		

1 2 3 4 5 6 7 8 9 33 464 Bain, T.K., Cook, D.G., Girman, D.J., 2017. Evaluating the effects of abiotic and biotic factors on movement 34 465 through wildlife crossing tunnels during migration of the california tiger salamander, Ambystoma 35 californiense. Herpetol. Conserv. Biol. 12, 192-201. 36 466 Barbour, E.H., 1895. Bird fatality along Nebraska railroads. The Auk 12, 187–187. 37 **467** 38 468 Beebee, T.J.C., 2013. Effects of road mortality and mitigation measures on amphibian populations. Conserv. 39 469 Biol. 27, 657-668. https://doi.org/10.1111/cobi.12063 40 470 Buxton, V.L., Ward, M.P., Sperry, J.H., 2015. Use of chorus sounds for location of breeding habitat in 2 species 41 **471** of anuran amphibians. Behav. Ecol. 26, 1111–1118. https://doi.org/10.1093/beheco/arv059 42 **472** Cayuela, H., Grolet, O., Joly, P., 2018. Context-dependent dispersal, public information, and heterospecific 43 **473** attraction in newts. Oecologia 188, 1069-1080. https://doi.org/10.1007/s00442-018-4267-3 44 **474** Clevenger, A.P., Ford, A.T., 2010. Wildlife crossing structures, fencing, and other highway design considerations. 45 **475** Colino-Rabanal, V.J., Lizana, M., 2012. Herpetofauna and roads: a review. Basic Appl. Herpetol. 26, 5–31. 46 476 Cushman, S.A., 2006. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Conserv. 128, 231-240. https://doi.org/10.1016/j.biocon.2005.09.031 Biol. 47 477 48 **478** Diego-Rasilla, F.J., 2003. Homing ability and sensitivity to the geomagnetic field in the alpine newt, Triturus 49 50 479 alpestris. Ethol. Ecol. Evol. 15, 251-259. https://doi.org/10.1080/08927014.2003.9522670 51 480 Diego-Rasilla, F.J., Luengo, R.M., 2007. Acoustic orientation in the palmate newt, Lissotriton helveticus. Behav. 52 **481** Ecol. Sociobiol. 61, 1329-1335. https://doi.org/10.1007/s00265-007-0363-9 53 **482** Diego-Rasilla, F.J., Luengo, R.M., 2004. Heterospecific call recognition and phonotaxis in the orientation 54 483 behavior of the marbled newt, Triturus marmoratus. Behav Ecol Sociobiol 55, 556–560. 55 484 Diego-Rasilla, F.J., Luengo, R.M., 2002. Celestial orientation in the marbled newt (Triturus marmoratus). J. 485 Ethol. 20, 137-141. https://doi.org/10.1007/s10164-002-0066-7 486 Diego-Rasilla, F.J., Luengo, R.M., Phillips, J.B., 2008. Use of a magnetic compass for nocturnal homing 487 orientation in the palmate newt, Lissotriton helveticus. Ethology 114, 808-815. 488 https://doi.org/10.1111/j.1439-0310.2008.01532.x 489 Diego-Rasilla, F.J., Luengo, R.M., Phillips, J.B., 2005. Magnetic compass mediates nocturnal homing by the 490 alpine newt, Triturus alpestris. Behav. Ecol. Sociobiol. 58, 361–365. https://doi.org/10.1007/s00265-491 005-0951-5 56 57 58

- 59
- 60
- 61
- 62
- 63 64

38

1		
2 3		
4		
5		
6		
7 8		
8 9		
5	492	Dodd, K.C.J., Barichivich, W.J., Smith, L.L., 2004. Effectiveness of a barrier wall and culverts in reducing wildlife 493 mortality on a heavily traveled highway in Florida. Biol. Conserv. 118, 619–631.
	494	Dole, J.W., 1972. Homing and orientation of displaced toads, <i>Bufo americanus</i> , to their home sites. Copeia
	495	1972, 151–158. https://doi.org/10.2307/1442791
	496	Dulac, J., 2013. Global land transport infrastructure requirements - Estimating road and railway infrastructure 497 capacity and costs to 2050 — UCSTUDI. International Energy Agency.
10	498 Eig	enbrod, F., Hecnar, S.J., Fahrig, L., 2008. The relative effects of road traffic and forest cover on anuran
11	499	populations. Biol. Conserv. 141, 35–46. https://doi.org/10.1016/j.biocon.2007.08.025
12	500 informatio	Fischer, J.H., Freake, M.J., Borland, S.C., Phillips, J.B., 2001. Evidence for the use of magnetic map n
13	501	by an amphibian. Anim. Behav. 62, 1–10. https://doi.org/10.1006/anbe.2000.1722
14	502	Forman, R.T.T., Alexander, L.E., 1998. Roads and Their Major Ecological Effects. Annu. Rev. Ecol. Syst. 29,
	207–	
15	503	231. https://doi.org/10.1146/annurev.ecolsys.29.1.207
16	504 diverse 17	Gerhardt, H.C., Huber, F., 2002. Acoustic communication in insects and anurans: common problems and solutions. University of Chicago Press.
18	506	Glista, D.J., DeVault, T.L., DeWoody, J.A., 2009. A review of mitigation measures for reducing wildlife
	mortality	
19	507	on roadways. Landsc. Urban Plan. 91, 1–7. https://doi.org/10.1016/j.landurbplan.2008.11.001 20 508
	Hamer	, A.J., van der Ree, R., Mahony, M.J., Langton, T., 2014. Usage rates of an under-road tunnel by three 21
	509	Australian frog species: implications for road mitigation. Anim. Conserv. 17, 379–387.
22	510	https://doi.org/10.1111/acv.12105
23 24	511	Hayward, R., Oldham, R., Watt, P.J., Head, S.M., 2000. Dispersion patterns of young great crested newts
25	512	(Triturus cristatus). Herpetol. J. 10, 129–136.
26	513 large	Hobbs, M.T., Brehme, C.S., 2017. An improved camera trap for amphibians, reptiles, small mammals, and
27	514	invertebrates. PloS One 12, e0185026. https://doi.org/10.1371/journal.pone.0185026
	515	Holderegger, R., Di Giulio, M., 2010. The genetic effects of roads: A review of empirical evidence. Basic
20	Appl.	
29	516	Ecol. 11, 522–531. https://doi.org/10.1016/j.baae.2010.06.006
55 56 57 58 59 60 61		
62 63	39	
63 64	39	

- 1 2 3
- 4 5
- 6
- 7 8
- 9
- 30 517 Jackson, S.D., Griffin, C.R., 2000. A strategy for mitigating highway impacts on wildlife. Wildlife and highways: 31 **518** seeking solutions to an ecological and socio-economic Dilemma. Wildl. Soc. 143–159. 32 **519** James, M.S., Stockwell, M.P., Clulow, J., Clulow, S., Mahony, M.J., 2015. Investigating behaviour for 33 **520** conservation goals: Conspecific call playback can be used to alter amphibian distributions within 34 **521** ponds. Biol. Conserv. 192, 287–293. https://doi.org/10.1016/j.biocon.2015.10.001 Jarvis, L.E., Hartup, M., Petrovan, S.O., 2019. Road mitigation using tunnels and fences promotes site 35 **522** 36 523 connectivity and population expansion for a protected amphibian. Eur. J. Wildl. Res. 65, 27. 37 38 524 https://doi.org/10.1007/s10344-019-1263-9 39 **525** Joly, P., 2019. Behavior in a changing landscape: Using movement ecology to inform the conservation of pond-40 526 breeding amphibians. Front. Ecol. Evol. 7. https://doi.org/10.3389/fevo.2019.00155 41 527 Joly, P., Miaud, C., 1993. How does a newt find its pond? The role of chemical cues in migrating newts (Triturus 42 528 alpestris). Ethol. Ecol. Evol. 5, 447-447. 43 529 Joly, P., Miaud, C., 1989. Fidelity to the breeding site in the alpine newt Triturus alpestris. Behav. Processes 19, 44 530 47-56. https://doi.org/10.1016/0376-6357(89)90030-2 45 531 Jumeau, J., 2017. Les possibilités de dispersion et éléments d'habitat-refuge dans un paysage d'agriculture 46 532 intensive fragmenté par un réseau routier dense: le cas de la petite faune dans la plaine du Bas-Rhin 47 533 (PhD Thesis). Strasbourg. Lesbarrères, D., Fahrig, L., 2012. Measures to reduce population fragmentation by roads: what has 48 534 worked and 49 535 how do we know? Trends Ecol. Evol. 27, 374–380. https://doi.org/10.1016/j.tree.2012.01.015 50 536 Lesbarrères, D., Fowler, M.S., Pagano, A., Lodé, T., 2010. Recovery of anuran community diversity following 51 52 **537** habitat replacement. J. Appl. Ecol. 47, 148–156. https://doi.org/10.1111/j.1365-2664.2009.01748.x 53 **538** Lesbarrères, D., Lodé, T., Merilä, J., 2004. What type of amphibian tunnel could reduce road kills? Oryx 38, 220-54 539 223. https://doi.org/10.1017/S0030605304000389 540 Madden, N., Jehle, R., 2017. Acoustic orientation in the great crested newt (Triturus cristatus). Amphib.-Reptil. 541 38, 57–65. https://doi.org/10.1163/15685381-00003083
- 56
- 57 58
- 58 59
- 60
- 61 62

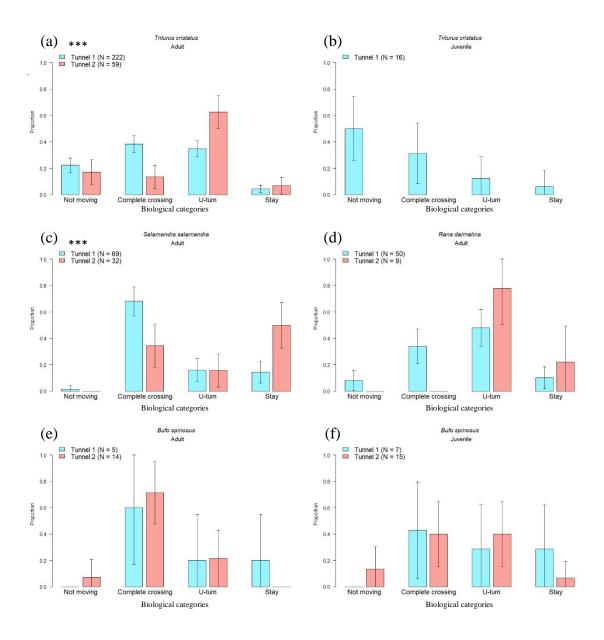
64 65

1

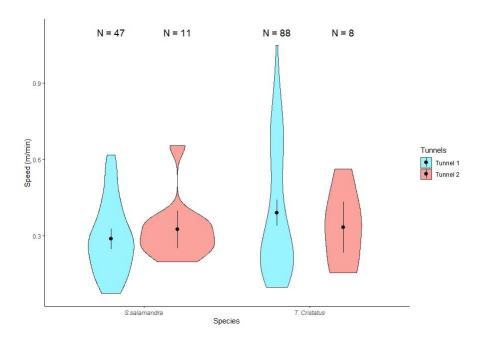
- 4
- 5
- 6 7
- ' 8
- 9
- 542 Matos, C., Petrovan, S., Ward, A.I., Wheeler, P., 2017. Facilitating permeability of landscapes impacted by roads 543 for protected amphibians: patterns of movement for the great crested newt. PeerJ 5, e2922. 544 https://doi.org/10.7717/peerj.2922 545 Matos, C., Petrovan, S.O., Wheeler, P.M., Ward, A.I., 2019. Short-term movements and behaviour govern the 546 use of road mitigation measures by a protected amphibian. Anim. Conserv. 22, 285-296. 547 https://doi.org/10.1111/acv.12467 548 Pagnucco, K.S., Paszkowski, C.A., Scrimgeour, G.J., 2012. Characterizing movement patterns and temporal use of under-road tunnels by long-toed salamanders in Waterton Lakes spatio549 National Park, Canada. Copeia 2012, 331–340. https://doi.org/10.1643/CE-10-128 550 Patrick, D.A., Schalk, C.M., Gibbs, J.P., Woltz, H.W., 2010. Effective culvert placement and design to 551 passage of amphibians across roads. J. Herpetol. 44, 618–626. facilitate 552 Phillips, J.B., 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765-553 767. 554 https://doi.org/10.1126/science.3738508
- 10

11 555 Pomezanski, D., Bennett, L., 2018. Developing recommendations for monitoring wildlife underpass usage using 12

trail cameras. Environ. Monit. Assess. 190, 413. https://doi.org/10.1007/s10661-018-6794-0 13 557 Puky, M.,


2003. Amphibian mitigation measures in Central-Europe.

14 558 Puky, M., Farkas, J., Ronkay, M.T., 2007. Use of existing mitigation measures by amphibians, reptiles, and small 15
 to medium-size mammals in Hungary: Crossing structures can function as multiple species-oriented 16 560
 measures. Road Ecol. Cent.


17	561	Pupin, F., Sacchi, R., Gentilli, A., Galeotti, P., Fasola, M., 2007. Discrimination of toad calls by smooth
	newts:	
18	562	support for the heterospecific attraction hypothesis. Anim. Behav. 74, 1683–1690.
19	563	https://doi.org/10.1016/j.anbehav.2007.03.020
20	564	Putman, B.J., Blumstein, D.T., 2019. Correction to: What is the effectiveness of using conspecific or
21	565	heterospecific acoustic playbacks for the attraction of animals for wildlife management? A systematic
22	566	review protocol. Environ. Evid. 8, 20. https://doi.org/10.1186/s13750-019-0161-7
23	567	Ronce, O., 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu.
	Rev.	
24		
25	568	Ecol. Evol. Syst. 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611
55		
56		
57		
58		
59		
60		
61 62		
63	/	1
	-	· •
64		

1 2 3 4 5		
5 6 7 8 9		
26	569 Road	Rytwinski, T., Fahrig, L., 2015. The impacts of roads and traffic on terrestrial animal populations. Handb.
27	570	Ecol. 237–246.
28	571	Sinsch, U., 2006. Orientation and navigation in Amphibia. Mar. Freshw. Behav. Physiol. 39, 65–71.
29	572	https://doi.org/10.1080/10236240600562794
30	573 Physiol.	Sinsch, U., 1987. Orientation behaviour of toads (Bufo bufo) displaced from the breeding site. J. Comp.
	574	A 161, 715–727. https://doi.org/10.1007/BF00605013
32	575 locate	Swanson, E.M., Tekmen, S.M., Bee, M.A., 2007. Do female frogs exploit inadvertent social information to
	576	breeding aggregations? Can. J. Zool. 85, 921–932. https://doi.org/10.1139/Z07-074
34	577	Testud, G., Miaud, C., 2018. From effects of linear transport infrastructures on amphibians to mitigation
35	578	measures. Reptil. Amphib. https://doi.org/10.5772/intechopen.74857
36 37	579 tagged	Testud, G., Vergnes, A., Cordier, P., Labarraque, D., Miaud, C., 2019. Automatic detection of small PIT-
	580	animals using wildlife crossings. Anim. Biotelemetry 7, 21. https://doi.org/10.1186/s40317-019-0183-5
39	581	Trochet, A., Le Chevalier, H., Calvez, O., Ribéron, A., Bertrand, R., Blanchet, S., 2019. Influence of
	substrate	types and morphological traits on movement behavior in a toad and newt species. PeerJ 6. 41
	583	https://doi.org/10.7717/peerj.6053
42	584	Trombulak, S.C., Frissell, C.A., 2000. Review of ecological effects of roads on terrestrial and aquatic
43	585	communities. Conserv. Biol. 14, 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x
44	586 Acad.	Twitty, V., Grant, D., Anderson, O., 1964. Long distance homing in the newt <i>Taricha rivularis</i> . Proc. Natl.
45 46	587 588 newt 47	 Sci. U. S. A. 51, 51. https://doi.org/10.1073/pnas.51.1.51 Weber, L., Šmejkal, M., Bartoň, D., Rulík, M., 2019. Testing the applicability of tagging the Great crested (<i>Triturus cristatus</i>) using passive integrated transponders. PLoS ONE 14, e0219069.
48	590	https://doi.org/10.1371/journal.pone.0219069
49	591	Woltz, H.W., Gibbs, J.P., Ducey, P.K., 2008. Road crossing structures for amphibians and reptiles: Informing
50 52	592 593	design through behavioral analysis. Biol. Conserv. 141, 2745–2750. 51 https://doi.org/10.1016/j.biocon.2008.08.010
53 54	594	
56 57 58 59 60 61 62 63		12
64		

Figure 2: Proportion of different behavioural patterns for four amphibian species in two tunnels of different lengths. Patterns: 'Not moving', 'Complete crossing', 'U-turn' and 'Stay' (described in 'Materials and methods'). Blue bars: tunnel 1 (21 m length) and light red bars: tunnel 2 (40 m length). (a) *Triturus cristatus* adults, (b) *Triturus cristatus* juveniles, (c) *Salamandra salamandra* adults, (d) *Rana dalmatina* adults, (e) *Bufo spinosus* adults, (f) *Bufo spinosus* juveniles. N : sample size, Vertical bars; confidence intervals at 0.05. * refers to test significance (*: P<0.05; **: P<0.01; ***: P<0.001)

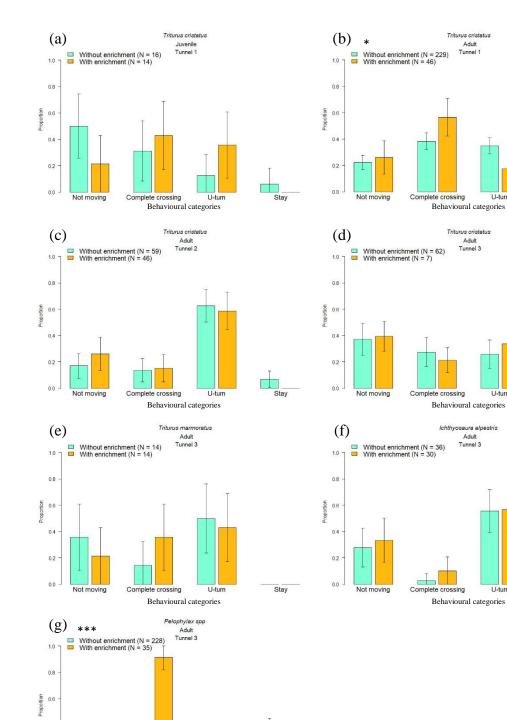


Figure 3: Mean speed of two amphibian species (*Salamandra salamandra* and *Triturus cristatus*, both adults) crossing two tunnels of different lengths. Blue bars: Tunnel 1 (21 m length, see figure 1) and light red bars: tunnel 2 (40 m length). N: sample size, vertical bars; confidence intervals at 0.05.

Figure 4: Proportion of different behavioural patterns for four amphibian species in three tunnels with and without acoustic enrichment. Patterns: 'Not moving', 'Complete crossing', 'U-turn' and 'Stay' (described in 'Materials and methods'). Green bars: without acoustic enrichment, orange bars = with acoustic enrichment. Tunnel 1 (21 m length, dry), tunnel 2 (40 m length, dry) and tunnel 3 (18.5 m length, wet). (a) *Triturus cristatus* juveniles in tunnel 1, (b) *Triturus cristatus* adults in tunnel 1, (c) *Triturus cristatus* adults in tunnel 2, (d) *Triturus cristatus* adults in tunnel 3, (e) *Triturus marmoratus* adults in tunnel 3, (f) *Ichtyosaura alpestris* adults in tunnel 3, (g) *Pelophylax* kl. adults in tunnel 3. N: sample size, vertical bars; confidence intervals at 0.05. * refers to test significance (*: P<0.05; **: P<0.01; ***: P<0.001)

Figure

lete crossing U-turn Behavioural categories

Stav

Comple

0.4 0.2 0.0

Not m

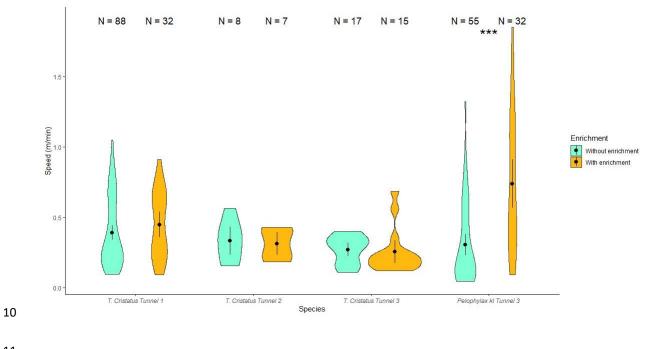
ving

Stay

U-turn

U-turn

U-turn


Figure 5: Crossing speed of two amphibian species (*Triturus cristatus* and *Pelophylax* kl., 2 both adults), in three tunnels with and without acoustic enrichment. Green bars: Tunnel 1 (21 m length, dry), and orange bars: tunnel 2 (40 m length, dry) and tunnel 3 (18.5 m length,

3 m length, dry), and orange bars: tunnel 2 (40 m length, dry) and tunnel 3 (18.5 m length, wet).

4 N: sample size, vertical bars; confidence intervals at 0.05. * refers to test significance (*: 5 P<0.05; **: P<0.01; ***: P<0.001)

- 6
- 7
- 8

9

11

Figure 1: Tunnel implemented under a railway as mitigation for the amphibian community (square concrete culvert 21m length, 1 m high, 1 m width)

Conflict of Interest

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: