S. E. Polo and G. Almouzni, Chromatin assembly: a basic recipe with various flavours, Curr Opin Genet Dev, vol.16, pp.104-111, 2006.

K. Ahmad and S. Henikoff, Histone H3 variants specify modes of chromatin assembly, Proc Natl Acad Sci U S A, vol.99, pp.16477-16484, 2002.

P. B. Talbert, K. Ahmad, G. Almouzni, J. Ausio, and F. Berger, A unified phylogeny-based nomenclature for histone variants, Epigenetics Chromatin, vol.5, p.7, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00710902

A. Corpet and G. Almouzni, Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information, Trends Cell Biol, vol.19, pp.29-41, 2009.

S. J. Elsaesser, A. D. Goldberg, and C. D. Allis, New functions for an old variant: no substitute for histone H3.3, Curr Opin Genet Dev, vol.20, pp.110-117, 2010.

A. D. Goldberg, L. A. Banaszynski, K. M. Noh, P. W. Lewis, and S. J. Elsaesser, Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell, vol.140, pp.678-691, 2010.

E. Szenker, D. Ray-gallet, and G. Almouzni, The double face of the histone variant H3.3, Cell Res, vol.21, pp.421-434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00742959

H. Tagami, D. Ray-gallet, G. Almouzni, and Y. Nakatani, Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis, Cell, vol.116, pp.51-61, 2004.

K. Ahmad and S. Henikoff, The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly, Mol Cell, vol.9, pp.1191-1200, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00782360

Y. Mito, J. G. Henikoff, and S. Henikoff, Genome-scale profiling of histone H3.3 replacement patterns, Nat Genet, vol.37, pp.1090-1097, 2005.

B. E. Schwartz and K. Ahmad, Transcriptional activation triggers deposition and removal of the histone variant H3.3, Genes Dev, vol.19, pp.804-814, 2005.

C. Wirbelauer, O. Bell, and D. Schubeler, Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias, Genes Dev, vol.19, pp.1761-1766, 2005.

C. M. Chow, A. Georgiou, H. Szutorisz, M. E. Silva, A. Pombo et al., Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division, EMBO Rep, vol.6, pp.354-360, 2005.

R. B. Deal, J. G. Henikoff, and S. Henikoff, Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones, Science, vol.328, pp.1161-1164, 2010.

Y. Mito, J. G. Henikoff, and S. Henikoff, Histone replacement marks the boundaries of cis-regulatory domains, Science, vol.315, pp.1408-1411, 2007.

J. I. Schneiderman, A. Sakai, S. Goldstein, and K. Ahmad, The XNP remodeler targets dynamic chromatin in Drosophila, Proc Natl Acad Sci U S A, vol.106, pp.14472-14477, 2009.

L. H. Wong, H. Ren, E. Williams, J. Mcghie, and S. Ahn, Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells, Genome Res, vol.19, pp.404-414, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02262274

T. Nakayama, K. Nishioka, Y. X. Dong, T. Shimojima, and S. Hirose, Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading, Genes & development, vol.21, pp.552-561, 2007.

P. B. Talbert and S. Henikoff, Histone variants-ancient wrap artists of the epigenome, Nat Rev Mol Cell Biol, vol.11, pp.264-275, 2010.

S. L. Ooi and S. Henikoff, Germline histone dynamics and epigenetics, Curr Opin Cell Biol, vol.19, pp.257-265, 2007.

G. A. Orsi, P. Couble, and B. Loppin, Epigenetic and replacement roles of histone variant H3.3 in reproduction and development, Int J Dev Biol, vol.53, pp.231-243, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425198

L. A. Banaszynski, C. D. Allis, and P. W. Lewis, Histone variants in metazoan development, Dev Cell, vol.19, pp.662-674, 2010.

G. W. Van-der-heijden, A. A. Derijck, E. Posfai, M. Giele, and P. Pelczar, Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation, Nat Genet, vol.39, pp.251-258, 2007.

C. Couldrey, M. B. Carlton, P. M. Nolan, W. H. Colledge, and M. J. Evans, A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice, Hum Mol Genet, vol.8, pp.2489-2495, 1999.

A. Santenard, C. Ziegler-birling, M. Koch, L. Tora, and A. J. Bannister, Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3, Nat Cell Biol, vol.12, pp.853-862, 2010.

E. Szenker, N. Lacoste, and G. Almouzni, A Developmental Requirement for HIRA-Dependent H3.3 Deposition Revealed at Gastrulation in Xenopus, Cell Rep, vol.1, pp.730-740, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00765971

M. Hodl and K. Basler, Transcription in the absence of histone H3.3, Curr Biol, vol.19, pp.1221-1226, 2009.

A. Sakai, B. E. Schwartz, S. Goldstein, and K. Ahmad, Transcriptional and developmental functions of the H3.3 histone variant in Drosophila, Curr Biol, vol.19, pp.1816-1820, 2009.

A. Akhmanova, K. Miedema, Y. Wang, M. Van-bruggen, and J. H. Berden, The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antiserum, Chromosoma, vol.106, pp.335-347, 1997.

D. T. Carrell, Epigenetics of the male gamete, Fertil Steril, vol.97, pp.267-274, 2012.

J. M. Eirin-lopez and J. Ausio, Origin and evolution of chromosomal sperm proteins, Bioessays, vol.31, pp.1062-1070, 2009.

D. Miller, M. Brinkworth, and D. Iles, Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics, Reproduction, vol.139, pp.287-301, 2010.

M. Ashburner, S. Misra, J. Roote, S. E. Lewis, and R. Blazej, An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region, Genetics, vol.153, pp.179-219, 1999.

J. Raja, S. Renkawitz-pohl, and R. , Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus, Mol Cell Biol, vol.25, pp.6165-6177, 2005.

C. Rathke, W. M. Baarends, S. Jayaramaiah-raja, M. Bartkuhn, and R. Renkawitz, Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila, J Cell Sci, vol.120, pp.1689-1700, 2007.

E. Bonnefoy, G. A. Orsi, P. Couble, and B. Loppin, The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization, PLoS Genet, vol.3, p.182, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195285

B. Loppin, E. Bonnefoy, C. Anselme, A. Laurencon, and T. L. Karr, The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus, Nature, vol.437, pp.1386-1390, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00391456

G. W. Van-der-heijden, J. W. Dieker, A. A. Derijck, S. Muller, and J. H. Berden, Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote, Mech Dev, vol.122, pp.1008-1022, 2005.

M. E. Torres-padilla, A. J. Bannister, P. J. Hurd, T. Kouzarides, and M. Zernicka-goetz, Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos, Int J Dev Biol, vol.50, pp.455-461, 2006.

Z. K. Zhao, W. Li, M. Y. Wang, L. Zhou, and J. L. Wang, The role of HIRA and maternal histones in sperm nucleus decondensation in the gibel carp and color crucian carp, Mol Reprod Dev, vol.78, pp.139-147, 2011.

E. M. Green, A. J. Antczak, A. O. Bailey, A. A. Franco, and K. J. Wu, Replication-independent histone deposition by the HIR complex and Asf1, Curr Biol, vol.15, pp.2044-2049, 2005.

P. Prochasson, L. Florens, S. K. Swanson, M. P. Washburn, and J. L. Workman, The HIR corepressor complex binds to nucleosomes generating a distinct protein/ DNA complex resistant to remodeling by SWI/SNF, Genes Dev, vol.19, pp.2534-2539, 2005.

A. D. Amin, N. Vishnoi, and P. Prochasson, A global requirement for the HIR complex in the assembly of chromatin, Biochim Biophys Acta, vol.1819, pp.264-276, 2011.

S. Balaji, L. M. Iyer, and L. Aravind, HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes, Mol Biosyst, vol.5, pp.269-275, 2009.

T. S. Rai, A. Puri, T. Mcbryan, J. Hoffman, and Y. Tang, Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex, Mol Cell Biol, vol.31, pp.4107-4118, 2011.

H. E. Anderson, A. Kagansky, J. Wardle, J. Rappsilber, and R. C. Allshire, Silencing mediated by the Schizosaccharomyces pombe HIRA complex is dependent upon the Hpc2-like protein, Hip4. PLoS ONE, vol.5, p.13488, 2010.

S. Aho, M. Buisson, T. Pajunen, Y. W. Ryoo, and J. F. Giot, Ubinuclein, a novel nuclear protein interacting with cellular and viral transcription factors, J Cell Biol, vol.148, pp.1165-1176, 2000.

G. Banumathy, N. Somaiah, R. Zhang, Y. Tang, and J. Hoffmann, Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ ASF1a chromatin-remodeling pathway in senescent cells, Mol Cell Biol, vol.29, pp.758-770, 2009.

Y. Tang, A. Puri, M. D. Ricketts, T. S. Rai, and J. Hoffmann, Identification of an ubinuclein 1 region required for stability and function of the human HIRA/ UBN1/CABIN1/ASF1a histone H3.3 chaperone complex, Biochemistry, vol.51, pp.2366-2377, 2012.

O. Ait-ahmed, M. Thomas-cavallin, and R. Rosset, Isolation and characterization of a region of the Drosophila genome which contains a cluster of differentially expressed maternal genes (yema gene region), Dev Biol, vol.122, pp.153-162, 1987.

O. Ait-ahmed, B. Bellon, M. Capri, C. Joblet, and M. Thomas-delaage, The yemanuclein-alpha: a new Drosophila DNA binding protein specific for the oocyte nucleus, Mech Dev, vol.37, pp.69-80, 1992.

R. E. Meyer, M. Delaage, R. Rosset, M. Capri, A. et al., A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant, BMC Genet, vol.11, p.104, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00575064

Y. M. Moshkin, T. W. Kan, H. Goodfellow, K. Bezstarosti, and R. K. Maeda, Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing, Mol Cell, vol.35, pp.782-793, 2009.

A. Y. Konev, M. Tribus, S. Y. Park, V. Podhraski, and C. Y. Lim, CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo, Science, vol.317, pp.1087-1090, 2007.

M. Fuller, The development of Drosophila melanogaster. 1 ed. Cold Spring Harbor, pp.71-148, 1993.

B. Loppin, M. Docquier, F. Bonneton, and P. Couble, The maternal effect mutation sesame affects the formation of the male pronucleus in Drosophila melanogaster, Dev Biol, vol.222, pp.392-404, 2000.

B. Loppin, F. Berger, and P. Couble, The Drosophila maternal gene sesame is required for sperm chromatin remodeling at fertilization, Chromosoma, vol.110, pp.430-440, 2001.

P. Drane, K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche, The deathassociated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3, Genes Dev, vol.24, pp.1253-1265, 2010.

P. W. Lewis, S. J. Elsaesser, K. M. Noh, S. C. Stadler, and C. D. Allis, Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replicationindependent chromatin assembly at telomeres, Proc Natl Acad Sci U S A, vol.107, pp.14075-14080, 2010.

L. H. Wong, J. D. Mcghie, M. Sim, M. A. Anderson, and S. Ahn, ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells, Genome Res, vol.20, pp.351-360, 2010.

A. R. Bassett, S. E. Cooper, A. Ragab, and A. A. Travers, The chromatin remodelling factor dATRX is involved in heterochromatin formation, PLoS ONE, vol.3, p.2099, 2008.

C. Roberts, H. F. Sutherland, H. Farmer, W. Kimber, and S. Halford, Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality, Mol Cell Biol, vol.22, pp.2318-2328, 2002.

D. Ray-gallet, A. Woolfe, I. Vassias, C. Pellentz, and N. Lacoste, Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity, Mol Cell, vol.44, pp.928-941, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743096

A. L. Kennedy, T. Mcbryan, G. H. Enders, F. B. Johnson, and R. Zhang, Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci, Cell Div, vol.5, p.16, 2010.

F. Mousson, F. Ochsenbein, and C. Mann, The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways, Chromosoma, vol.116, pp.79-93, 2007.

D. Ray-gallet, J. P. Quivy, H. W. Sillje, E. A. Nigg, and G. Almouzni, The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts, Chromosoma, vol.116, pp.487-496, 2007.

X. Ye, B. Zerlanko, R. Zhang, N. Somaiah, and M. Lipinski, Definition of pRB-and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci, Mol Cell Biol, vol.27, pp.2452-2465, 2007.

A. B. Singer and J. G. Gall, An inducible nuclear body in the Drosophila germinal vesicle, Nucleus, vol.2, pp.403-409, 2011.

R. Dubruille, G. A. Orsi, L. Delabaere, E. Cortier, and P. Couble, Specialization of a Drosophila capping protein essential for the protection of sperm telomeres, Curr Biol, vol.20, pp.2090-2099, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00709384

M. Schuh, C. F. Lehner, and S. Heidmann, Incorporation of Drosophila CID/ CENP-A and CENP-C into centromeres during early embryonic anaphase, Curr Biol, vol.17, pp.237-243, 2007.

C. S. Thummel, A. M. Boulet, and H. D. Lipshitz, Vectors for Drosophila Pelement-mediated transformation and tissue culture transfection, Gene, vol.74, pp.445-456, 1988.

J. Bischof, R. K. Maeda, M. Hediger, F. Karch, and K. Basler, An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases, Proc Natl Acad Sci U S A, vol.104, pp.3312-3317, 2007.

A. C. Groth, M. Fish, R. Nusse, and M. P. Calos, Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31, Genetics, vol.166, pp.1775-1782, 2004.

M. Capri, M. J. Santoni, M. Thomas-delaage, A. , and O. , Implication of a 59 coding sequence in targeting maternal mRNA to the Drosophila oocyte, Mech Dev, vol.68, pp.91-100, 1997.

S. Aho, J. Lupo, P. A. Coly, A. Sabine, and M. Castellazzi, Characterization of the ubinuclein protein as a new member of the nuclear and adhesion complex components (NACos), Biol Cell, vol.101, pp.319-334, 2009.

H. Jager, A. Herzig, C. F. Lehner, and S. Heidmann, Drosophila separase is required for sister chromatid separation and binds to PIM and THR, Genes Dev, vol.15, pp.2572-2584, 2001.