E. Rosenberg, O. Koren, L. Reshef, R. Efrony, and I. Zilber-rosenberg, The role of microorganisms in coral health, disease and evolution, Nat Rev Microbiol, vol.5, pp.355-62, 2007.

G. A. Cresci and E. Bawden, Gut microbiome: what we do and don't know, Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr, vol.30, pp.734-780, 2015.

A. E. Douglas, Multiorganismal insects: diversity and function of resident microorganisms, Annu Rev Entomol, vol.60, pp.17-34, 2015.

A. K. Snyder and R. Rio, Interwoven biology of the tsetse holobiont, J Bacteriol, vol.195, pp.4322-4352, 2013.

E. P. Caragata, H. Dutra, and L. A. Moreira, Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia, Trends Parasitol, vol.32, pp.207-225, 2016.

B. Erkosar, G. Storelli, A. Defaye, and F. Leulier, Host-intestinal microbiota mutualism: "learning on the fly, Cell Host Microbe, vol.13, pp.8-14, 2013.

. Who-|-executive, , 2017.

. Who-|-malaria, , 2017.

W. H. Organization, of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. Rapport de situation 2000-2009 et plan stratégique 2010-2020 du programme mondial pour l'élimination de la filariose lymphatique: à mi-parcours vers l'élimination de cette maladie, 2010.

J. Patterson, M. Sammon, M. Garg, and . Dengue, Zika and chikungunya: emerging arboviruses in the new world, West J Emerg Med, vol.17, pp.671-680, 2016.

S. C. Weaver, C. Charlier, N. Vasilakis, and M. Lecuit, Zika, chikungunya, and other emerging vectorborne viral diseases, Annu Rev Med, vol.69, issue.1, pp.395-408, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02168433

D. Baud, D. J. Gubler, B. Schaub, M. C. Lanteri, and D. Musso, An update on Zika virus infection, Lancet, vol.390, pp.2099-2109, 2017.

F. Schaffner, J. M. Medlock, V. Bortel, and W. , Public health significance of invasive mosquitoes in Europe, Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis, vol.19, pp.685-92, 2013.

R. W. Sutherst, Global change and human vulnerability to vector-borne diseases, Clin Microbiol Rev, vol.17, pp.136-73, 2004.

I. Ricci, C. Damiani, A. Capone, C. Defreece, P. Rossi et al., Mosquito/ microbiota interactions: from complex relationships to biotechnological perspectives, Curr Opin Microbiol, vol.15, pp.278-84, 2012.

G. Minard, P. Mavingui, and C. V. Moro, Diversity and function of bacterial microbiota in the mosquito holobiont, Parasit Vectors, vol.6, p.146, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522191

D. Duguma, M. W. Hall, C. T. Smartt, and J. D. Neufeld, Effects of Organic Amendments on Microbiota Associated with the Culex nigripalpus Mosquito Vector of the Saint Louis Encephalitis and West Nile Viruses, mSphere, vol.2, pp.387-403, 2017.

M. Buck, L. Nilsson, C. Brunius, R. K. Dabiré, R. Hopkins et al., Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes, Sci Rep, vol.6, p.22806, 2016.

K. L. Coon, M. R. Brown, and M. R. Strand, Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats, Mol Ecol, vol.25, pp.5806-5832, 2016.

G. Gimonneau, M. T. Tchioffo, L. Abate, A. Boissière, P. H. Awono-ambéné et al., Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages, Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis, vol.28, pp.715-739, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01546167

C. Kim, R. L. Lampman, and E. J. Muturi, Bacterial communities and midgut microbiota associated with mosquito populations from waste tires in East-Central Illinois, J Med Entomol, vol.52, pp.63-75, 2015.

N. Dada, E. Jumas-bilak, S. Manguin, R. Seidu, T. Stenström et al., Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers, Parasit Vectors, vol.7, p.391, 2014.

D. Duguma, M. W. Hall, P. Rugman-jones, R. Stouthamer, O. Terenius et al., Developmental succession of the microbiome of Culex mosquitoes, BMC Microbiol, vol.15, p.140, 2015.

K. K. Yadav, S. Datta, A. Naglot, A. Bora, V. Hmuaka et al., Diversity of cultivable midgut microbiota at different stages of the Asian Tiger mosquito, Aedes albopictus from Tezpur, India PloS One, vol.11, p.167409, 2016.

K. L. Coon, K. J. Vogel, M. R. Brown, and M. R. Strand, Mosquitoes rely on their gut microbiota for development, Mol Ecol, vol.23, pp.2727-2766, 2014.

R. M. Moll, W. S. Romoser, M. C. Modrzakowski, A. C. Moncayo, and K. Lerdthusnee, Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis, J Med Entomol, vol.38, pp.29-32, 2001.

N. Segata, F. Baldini, J. Pompon, W. S. Garrett, D. T. Truong et al., The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers, Sci Rep, vol.6, p.24207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003250

C. Astudillo-garcía, J. J. Bell, N. S. Webster, B. Glasl, J. Jompa et al., Evaluating the core microbiota in complex communities: a systematic investigation, Environ Microbiol, vol.19, pp.1450-62, 2017.

M. R. David, L. Santos, A. Vicente, and R. Maciel-de-freitas, Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan, Mem Inst Oswaldo Cruz, vol.111, pp.577-87, 2016.

C. T. Ngo, F. Aujoulat, F. Veas, E. Jumas-bilak, and S. Manguin, Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint, PLoS One, vol.10, issue.3, p.118634, 2015.

C. T. Ngo, S. Romano-bertrand, S. Manguin, and E. Jumas-bilak, Diversity of the bacterial microbiota of Anopheles mosquitoes from Binh Phuoc Province, Vietnam. Front Microbiol, vol.7, p.2095, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01814232

G. Minard, F. H. Tran, V. T. Van, C. Goubert, C. Bellet et al., French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives, Front Microbiol, vol.6, p.970, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02025606

M. T. Tchioffo, A. Boissière, L. Abate, S. E. Nsango, A. N. Bayibéki et al., Dynamics of bacterial community composition in the malaria mosquito's epithelia, Front Microbiol, vol.6, p.1500, 2016.

M. Leung, D. Wilkins, and P. Lee, Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups, Sci Rep, vol.5, p.11845, 2015.

K. K. Yadav, A. Bora, S. Datta, K. Chandel, H. K. Gogoi et al., Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit Vectors, vol.8, p.641, 2015.

E. J. Muturi, C. Kim, J. Bara, E. M. Bach, and M. H. Siddappaji, Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa, Parasit Vectors, vol.9, p.18, 2016.

J. A. Chandler, R. M. Liu, and S. N. Bennett, RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi, Front Microbiol, vol.6, p.185, 2015.

E. S. Andrews, G. Xu, and S. M. Rich, Microbial communities within field-collected Culiseta melanura and Coquillettidia perturbans, Med Vet Entomol, vol.28, pp.125-157, 2014.

E. J. Muturi, J. L. Ramirez, A. P. Rooney, and C. Kim, Comparative analysis of gut microbiota of mosquito communities in Central Illinois, PLoS Negl Trop Dis, vol.11, issue.2, p.5377, 2017.

C. J. Champion and J. Xu, The impact of metagenomic interplay on the mosquito redox homeostasis, Free Radic Biol Med, vol.105, pp.79-85, 2017.

S. Van-tol and G. Dimopoulos, Chapter nine-influences of the mosquito microbiota on vector competence, Advances in insect physiology, vol.51, pp.243-91, 2016.

K. Zouache, R. J. Michelland, A. Failloux, G. L. Grundmann, and P. Mavingui, Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector, Mol Ecol, vol.21, pp.2297-309, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01681000

E. J. Muturi, J. J. Bara, A. P. Rooney, and A. K. Hansen, Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection, Mol Ecol, vol.25, pp.4075-90, 2016.

J. L. Ramirez, J. Souza-neto, T. Cosme, R. Rovira, J. Ortiz et al., Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence, PLoS Negl Trop Dis, vol.6, issue.3, p.1561, 2012.

L. Villegas, T. B. Campolina, N. R. Barnabe, A. S. Orfano, B. A. Chaves et al., Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis, PLoS One, vol.13, p.190352, 2018.

S. M. Short, E. F. Mongodin, H. J. Macleod, O. Talyuli, and G. Dimopoulos, Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability, PLoS Negl Trop Dis, vol.11, p.5677, 2017.

G. Moureau, L. Ninove, A. Izri, S. Cook, X. De-lamballerie et al., Flavivirus RNA in phlebotomine sandflies, Vector Borne Zoonotic Dis Larchmt N, vol.10, pp.195-202, 2010.

V. Stollar and V. L. Thomas, An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells, Virology, vol.64, pp.367-77, 1975.

R. C. Sang, A. Gichogo, J. Gachoya, M. D. Dunster, V. Ofula et al., Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in Central Kenya, Arch Virol, vol.148, pp.1085-93, 2003.

K. Hoshino, H. Isawa, Y. Tsuda, K. Yano, T. Sasaki et al., Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan, Virology, vol.359, pp.405-419, 2007.

N. Vasilakis and R. B. Tesh, Insect-specific viruses and their potential impact on arbovirus transmission, Curr Opin Virol, vol.15, pp.69-74, 2015.

B. G. Bolling, S. C. Weaver, R. B. Tesh, and N. Vasilakis, Insect-specific virus discovery: significance for the arbovirus community, Viruses, vol.7, pp.4911-4939, 2015.

C. M. Roundy, S. R. Azar, S. L. Rossi, S. C. Weaver, and N. Vasilakis, Insect-specific viruses: a historical overview and recent developments, Adv Virus Res, vol.98, pp.119-165, 2017.

M. Calzolari, L. Zé-zé, A. Vázquez, S. Seco, M. P. Amaro et al., Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects, Infect Genet Evol, vol.40, pp.381-389, 2016.

B. J. Blitvich and A. E. Firth, Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization, Viruses, vol.7, pp.1927-59, 2015.

F. Nasar, G. Palacios, R. V. Gorchakov, H. Guzman, D. Rosa et al., Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication, Proc Natl Acad Sci U S A, vol.109, pp.14622-14629, 2012.

K. Hermanns, F. Zirkel, A. Kopp, M. Marklewitz, I. B. Rwego et al., Discovery of a novel alphavirus related to Eilat virus, J Gen Virol, vol.98, pp.43-52, 2017.

R. Saiyasombat, B. G. Bolling, A. C. Brault, L. C. Bartholomay, and B. J. Blitvich, Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae), J Med Entomol, vol.48, pp.1031-1039, 2011.

A. D. Haddow, H. Guzman, V. L. Popov, T. G. Wood, S. G. Widen et al., First isolation of Aedes flavivirus in the western hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae), Virology, vol.440, pp.134-143, 2013.

M. J. Roossinck, Plants, viruses and the environment: ecology and mutualism, Virology, pp.271-278, 2015.

R. Halbach, S. Junglen, and R. P. Van-rij, Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense, Curr Opin Insect Sci, vol.22, pp.16-27, 2017.

B. G. Bolling, F. J. Olea-popelka, L. Eisen, C. G. Moore, and C. D. Blair, Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus, Virology, vol.427, pp.90-97, 2012.

M. Marklewitz, F. Zirkel, A. Kurth, C. Drosten, and S. Junglen, Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family, Proc Natl Acad Sci U S A, vol.112, pp.7536-7577, 2015.

F. Nasar, R. V. Gorchakov, R. B. Tesh, and S. C. Weaver, Eilat virus host range restriction is present at multiple levels of the virus life cycle, J Virol, vol.89, pp.1404-1422, 2015.

J. H. Erasmus, A. J. Auguste, J. T. Kaelber, H. Luo, S. L. Rossi et al., A chikungunya fever vaccine utilizing an insect-specific virus platform, Nat Med, vol.23, pp.192-201, 2017.

M. O. Tree, D. R. Mckellar, K. J. Kieft, A. M. Watson, K. D. Ryman et al., Insectspecific flavivirus infection is restricted by innate immunity in the vertebrate host, Virology, vol.497, pp.81-91, 2016.

E. Belda, B. Coulibaly, A. Fofana, A. H. Beavogui, S. F. Traore et al., Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome, Sci Rep, vol.7, p.3241, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570222

A. Steyn, F. Roets, and A. Botha, Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens, Microb Ecol, vol.71, pp.747-60, 2016.

J. Bozic, A. Capone, D. Pediconi, P. Mensah, A. Cappelli et al., Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination, Environ Microbiol Rep, vol.9, issue.5, pp.642-690, 2017.

C. Lavialle, G. Cornelis, A. Dupressoir, C. Esnault, O. Heidmann et al., Paleovirology of "syncytins", retroviral env genes exapted for a role in placentation, Philos Trans R Soc Lond Ser B Biol Sci, vol.368, 2013.

E. Mitraka, S. Stathopoulos, I. Siden-kiamos, G. K. Christophides, and C. Louis, Asaia accelerates larval development of Anopheles gambiae, Pathog Glob Health, vol.107, pp.305-316, 2013.

L. M. Díaz-nieto, C. Alessio, M. A. Perotti, and C. M. Berón, Culex pipiens development is greatly influenced by native bacteria and exogenous yeast, PLoS One, vol.11, p.153133, 2016.

K. J. Vogel, L. Valzania, K. L. Coon, M. R. Brown, and M. R. Strand, Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae, PLoS Negl Trop Dis, vol.11, p.5273, 2017.

K. L. Coon, L. Valzania, D. A. Mckinney, K. J. Vogel, M. R. Brown et al., Bacteriamediated hypoxia functions as a signal for mosquito development, Proc Natl Acad Sci, vol.114, pp.5362-5371, 2017.

L. Valzania, K. L. Coon, K. J. Vogel, M. R. Brown, and M. R. Strand, Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti, Proc Natl Acad Sci U S A, vol.115, pp.457-65, 2018.

M. J. Pennington, S. M. Prager, W. E. Walton, and J. T. Trumble, Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants, Sci Rep, vol.6, p.21969, 2016.

K. L. Coon, M. R. Brown, and M. R. Strand, Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae), Parasit Vectors, vol.9, p.375, 2016.

C. D. Patil, H. P. Borase, B. K. Salunke, and S. V. Patil, Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management, Parasitol Res, vol.112, pp.3283-3291, 2013.

S. Caccia, D. Lelio, I. , L. Storia, A. Marinelli et al., Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism, Proc Natl Acad Sci, vol.113, pp.9486-91, 2016.

G. Wei, Y. Lai, G. Wang, H. Chen, F. Li et al., Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality, Proc Natl Acad Sci, vol.114, pp.5994-6003, 2017.

G. Minard, T. Van, V. Tran, F. H. Melaun, C. Klimpel et al., Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: new perspectives in phylosymbiosis of insect vector, Parasit Vectors, vol.10, p.276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589415

E. Novakova, D. C. Woodhams, S. M. Rodríguez-ruano, R. M. Brucker, J. W. Leff et al., Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus, Front Microbiol, vol.8, p.526, 2017.

L. Klasson, Z. Kambris, P. E. Cook, T. Walker, and S. P. Sinkins, Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti, BMC Genomics, vol.10, p.33, 2009.

Q. Hou, J. He, J. Yu, Y. Ye, D. Zhou et al., A case of horizontal gene transfer from Wolbachia to Aedes albopictus C6/36 cell line, Mob Genet Elem, vol.4, p.28914, 2014.

R. Acuña, B. E. Padilla, C. P. Flórez-ramos, J. D. Rubio, J. C. Herrera et al., Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee, Proc Natl Acad Sci U S A, vol.109, pp.4197-202, 2012.

C. Li, M. Shi, J. Tian, X. Lin, Y. Kang et al., Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses, eLife, vol.4, p.5378, 2015.

K. E. Olson and M. Bonizzoni, Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?, Curr Opin Insect Sci, vol.22, pp.45-53, 2017.

M. D. Audsley, A. Seleznev, D. A. Joubert, M. Woolfit, S. L. O'neill et al., Wolbachiainfection alters the relative abundance of resident bacteria in adult Aedes aegypti mosquitoes, but not larvae, Mol Ecol, vol.27, issue.1, pp.297-309, 2018.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nat Rev Microbiol, vol.6, pp.741-51, 2008.

G. L. Hughes, B. L. Dodson, R. M. Johnson, C. C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proc Natl Acad Sci, vol.111, pp.12498-503, 2014.

P. Rossi, I. Ricci, A. Cappelli, C. Damiani, U. Ulissi et al., Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, Parasit Vectors, vol.8, p.278, 2015.

E. Schnettler, V. B. Sreenu, T. Mottram, and M. Mcfarlane, Wolbachia restricts insectspecific flavivirus infection in Aedes aegypti cells, J Gen Virol, vol.97, pp.3024-3033, 2016.

G. Cheng, Y. Liu, P. Wang, and X. Xiao, Mosquito defense strategies against viral infection, Trends Parasitol, vol.32, pp.177-86, 2016.

S. Hegde, J. L. Rasgon, and G. L. Hughes, The microbiome modulates arbovirus transmission in mosquitoes, Curr Opin Virol, vol.15, pp.97-102, 2015.

L. C. Bartholomay and K. Michel, Mosquito immunobiology: the intersection of vector health and vector competence, Annu Rev Entomol, vol.63, pp.145-67, 2018.

R. G. Saraiva, S. Kang, M. L. Simões, Y. I. Angleró-rodríguez, and G. Dimopoulos, Mosquito gut antiparasitic and antiviral immunity, Dev Comp Immunol, vol.64, pp.53-64, 2016.

B. Weiss and S. Aksoy, Microbiome influences on insect host vector competence, Trends Parasitol, vol.27, pp.514-536, 2011.

M. T. Tchioffo, A. Boissière, T. S. Churcher, L. Abate, G. Gimonneau et al., Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut Bacteria, PLoS One, vol.8, issue.12, p.81663, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01546172

J. L. Ramirez, S. M. Short, A. C. Bahia, R. G. Saraiva, Y. Dong et al., Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has Entomopathogenic and in vitro anti-pathogen activities, PLoS Pathog, vol.10, issue.10, p.1004398, 2014.

C. M. Cirimotich, Y. Dong, A. M. Clayton, S. L. Sandiford, J. A. Souza-neto et al., Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae, Science, vol.332, pp.855-863, 2011.

N. J. Dennison, R. G. Saraiva, C. M. Cirimotich, G. Mlambo, E. F. Mongodin et al., Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence, Malar J, vol.15, issue.1, p.425, 2016.

M. T. Tchioffo, L. Abate, A. Boissière, S. E. Nsango, G. Gimonneau et al., An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut, Infect Genet Evol, vol.43, pp.22-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003695

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouédraogo, M. Basáñez et al., Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nat Commun, vol.6, p.5921, 2015.

M. Gendrin, R. S. Yerbanga, J. B. Ouedraogo, T. Lefèvre, A. Cohuet et al., Differential effects of azithromycin, doxycycline, and cotrimoxazole in ingested blood on the vectorial capacity of malaria mosquitoes, Open Forum Infect Dis, vol.3, p.74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02411122

F. H. Rodgers, M. Gendrin, C. Wyer, and G. K. Christophides, Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes, PLoS Pathog, vol.13, issue.5, p.1006391, 2017.

S. Stathopoulos, D. E. Neafsey, M. Lawniczak, M. Muskavitch, and G. K. Christophides, Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens, PLoS Pathog, vol.10, issue.3, p.1003897, 2014.

M. Gendrin, A. Zaidman-rémy, N. A. Broderick, J. Paredes, M. Poidevin et al., Functional analysis of PGRP-LA in Drosophila immunity, PLoS One, vol.8, p.69742, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01620198

M. Gendrin, F. Turlure, F. H. Rodgers, A. Cohuet, I. Morlais et al., The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to Bacteria and affect infection by Plasmodium, J Innate Immun, vol.9, pp.333-375, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02009887

Y. Wang, Y. Wang, J. Zhang, W. Xu, J. Zhang et al., Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus, Exp Parasitol, vol.134, pp.460-465, 2013.

N. J. Dennison, O. J. Benmarzouk-hidalgo, and G. Dimopoulos, MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota, Dev Comp Immunol, vol.49, pp.170-178, 2015.

J. Kamtchum-tatuene, B. L. Makepeace, L. Benjamin, M. Baylis, and T. Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Curr Opin Infect Dis, vol.30, pp.108-124, 2017.

M. D. Audsley, Y. H. Ye, and E. A. Mcgraw, The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus, PLoS Negl Trop Dis, vol.11, p.5426, 2017.

L. B. Dickson, D. Jiolle, G. Minard, I. Moltini-conclois, S. Volant et al., Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector, Sci Adv, vol.3, p.1700585, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580399

A. Apte-deshpande, M. Paingankar, M. D. Gokhale, and D. N. Deobagkar, Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus, PLoS One, vol.7, p.40401, 2012.

A. D. Apte-deshpande, M. S. Paingankar, M. D. Gokhale, and D. N. Deobagkar, Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus, Indian J Med Res, vol.139, pp.762-770, 2014.

N. J. Dennison, N. Jupatanakul, and G. Dimopoulos, The mosquito microbiota influences vector competence for human pathogens, Curr Opin Insect Sci, vol.3, pp.6-13, 2014.

A. Vega-rua, K. Zouache, V. Caro, L. Diancourt, P. Delaunay et al., High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the southeast of France, PLoS One, vol.8, issue.3, p.59716, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01718113

K. Zouache, A. Fontaine, A. Vega-rua, L. Mousson, J. Thiberge et al., Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential, Proc R Soc B Biol Sci, p.281, 1792.
URL : https://hal.archives-ouvertes.fr/pasteur-01680228

S. Sim, N. Jupatanakul, and G. Dimopoulos, Mosquito immunity against arboviruses, Viruses, vol.6, pp.4479-504, 2014.

C. D. Blair and K. E. Olson, The role of RNA interference (RNAi) in arbovirus-vector interactions, Viruses, vol.7, pp.820-863, 2015.

K. Etebari, S. Hegde, M. A. Saldaña, S. G. Widen, T. G. Wood et al., Global transcriptome analysis of Aedes aegypti mosquitoes in response to Zika virus infection, mSphere, vol.2, pp.456-473, 2017.

X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc Natl Acad Sci U S A, vol.109, pp.23-31, 2012.

X. Pan, S. Thiem, and Z. Xi, Chapter 3-Wolbachia-mediated immunity induction in mosquito vectors, Arthropod Vector: Controller of Disease Transmission, vol.1, pp.35-58, 2017.

G. Carissimo, E. Pondeville, M. Mcfarlane, I. Dietrich, C. Mitri et al., Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota, Proc Natl Acad Sci U S A, vol.112, pp.176-85, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01103895

M. Vayssier-taussat, A. E. Citti, C. Cosson, J. Jacques, M. Lebrun et al., Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics, Front Cell Infect Microbiol, vol.4, p.29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01153583

J. Ryu, S. Kim, H. Lee, J. Y. Bai, Y. Nam et al., Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila, Science, vol.319, pp.777-82, 2008.

J. Rodrigues, F. A. Brayner, L. C. Alves, R. Dixit, and C. Barillas-mury, Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes, Science, vol.329, pp.1353-1358, 2010.

S. Wu, C. Liao, R. Pan, and J. Juang, Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila, Cell Host Microbe, vol.11, pp.410-417, 2012.

M. Valzano, V. Cecarini, A. Cappelli, A. Capone, J. Bozic et al., A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites, Malar J, vol.15, p.21, 2016.

Y. I. Angleró-rodríguez, B. J. Blumberg, Y. Dong, S. L. Sandiford, A. Pike et al., A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection, Sci Rep, vol.6, p.34084, 2016.

Y. I. Angleró-rodríguez, O. A. Talyuli, B. J. Blumberg, S. Kang, C. Demby et al., An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity, vol.6, p.28844, 2017.

R. J. Kent, M. B. Crabtree, and B. R. Miller, Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal, PLoS Negl Trop Dis, vol.4, p.671, 2010.

R. Kuwata, H. Isawa, K. Hoshino, T. Sasaki, M. Kobayashi et al., Analysis of mosquito-borne Flavivirus superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) cells persistently infected with Culex Flavivirus (Flaviviridae), J Med Entomol, vol.52, pp.222-231, 2015.

J. L. Kenney, O. D. Solberg, S. A. Langevin, and A. C. Brault, Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses, J Gen Virol, vol.95, pp.2796-808, 2014.

S. Goenaga, J. L. Kenney, N. K. Duggal, M. Delorey, G. D. Ebel et al., Potential for co-infection of a mosquito-specific Flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes, Viruses, vol.7, pp.5801-5813, 2015.

P. Gabrieli, A. Smidler, and F. Catteruccia, Engineering the control of mosquitoborne infectious diseases, Genome Biol, vol.15, p.535, 2014.

A. Wilke and M. T. Marrelli, Paratransgenesis: a promising new strategy for mosquito vector control, Parasit Vectors, vol.8, p.342, 2015.

S. Wang, A. K. Ghosh, N. Bongio, K. A. Stebbings, D. J. Lampe et al., Fighting malaria with engineered symbiotic bacteria from vector mosquitoes, Proc Natl Acad Sci, vol.109, pp.12734-12743, 2012.

M. V. Mancini, R. Spaccapelo, C. Damiani, A. Accoti, M. Tallarita et al., Paratransgenesis to control malaria vectors: a semi-field pilot study, Parasit Vectors, vol.9, p.140, 2016.

N. J. Bongio and D. J. Lampe, Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. Bacteria Using a Novel Native Secretion Signal, PloS One, vol.10, p.143541, 2015.

Y. T. Touré, A. Oduola, J. Sommerfeld, and C. Morel, Biosafety and risk assessment in the use of genetically modified mosquitoes for disease control, Ecological Aspects for Application of Genetically Modified Mosquitoes. Wageningen: Wageningen UR Frontis Series, vol.2, pp.217-239, 2002.

M. Christodoulou, Biological vector control of mosquito-borne diseases, Lancet Infect Dis, vol.11, pp.84-89, 2011.

J. Kean, S. M. Rainey, M. Mcfarlane, C. L. Donald, E. Schnettler et al., Fighting arbovirus transmission: natural and engineered control of vector competence in Aedes mosquitoes, Insects, vol.6, pp.236-78, 2015.

L. B. Carrington, B. Tran, N. Le, T. Luong, T. T. Nguyen et al., Field-and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes, Proc Natl Acad Sci U S A, vol.115, pp.361-367, 2018.

F. Baldini, N. Segata, J. Pompon, P. Marcenac, W. R. Shaw et al., Evidence of natural Wolbachia infections in field populations of Anopheles gambiae, Nat Commun, vol.5, p.3985, 2014.

W. R. Shaw, P. Marcenac, L. M. Childs, C. O. Buckee, F. Baldini et al., Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development, Nat Commun, vol.7, p.11772, 2016.

D. Zhang, R. S. Lees, Z. Xi, K. Bourtzis, and J. Gilles, Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions, PLoS One, vol.11, p.151864, 2016.

D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, and J. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS One, vol.10, p.121126, 2015.

J. Dittmer, E. J. Van-opstal, J. D. Shropshire, S. R. Bordenstein, G. Hurst et al., Disentangling a Holobiont -recent advances and perspectives in Nasonia wasps, Front Microbiol, vol.7, p.1478, 2016.

R. M. Brucker and S. R. Bordenstein, The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia, Science, vol.341, pp.667-676, 2013.

Y. Kikuchi, M. Hayatsu, T. Hosokawa, A. Nagayama, K. Tago et al., Symbiont-mediated insecticide resistance, Proc Natl Acad Sci U S A, vol.109, pp.8618-8640, 2012.

H. E. Dunbar, A. Wilson, N. R. Ferguson, and N. A. Moran, Aphid thermal tolerance is governed by a point mutation in bacterial symbionts, PLoS Biol, vol.5, p.96, 2007.

K. Bourtzis, S. L. Dobson, Z. Xi, J. L. Rasgon, M. Calvitti et al., Harnessing mosquito-Wolbachia symbiosis for vector and disease control, Acta Trop, vol.132, pp.150-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02522213

A. R. Chavshin, M. A. Oshaghi, H. Vatandoost, M. R. Pourmand, A. Raeisi et al., Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach, Parasit Vectors, vol.7, p.419, 2014.

P. Sharma, S. Sharma, R. K. Maurya, T. D. De, T. Thomas et al., Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies, Parasit Vectors, vol.7, p.235, 2014.

P. Thongsripong, J. A. Chandler, A. B. Green, P. Kittayapong, B. A. Wilcox et al., Mosquito vector-associated microbiota: metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases, Ecol Evol, vol.8, pp.1352-68, 2018.

E. M. Mwadondo, A. Ghilamicael, A. E. Alakonya, and R. W. Kasili, Midgut bacterial diversity analysis of laboratory reared and wild Anopheles gambiae and Culex quinquefasciatus mosquitoes in Kenya, Afr J Microbiol Res, vol.11, pp.1171-83, 2017.