J. B. Harborne and C. A. Williams, Advances in flavonoid research since 1992, Phytochemistry, vol.55, pp.481-504, 2000.

L. Bravo, Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nut Rev, vol.56, pp.317-333, 1998.

R. D. Mellway and C. P. Constabel, Metabolic engineering and potential functions of proanthocyanidins in poplar, Plant. Signal. Behav, vol.4, pp.790-792, 2009.

G. Latouche, S. Bellow, A. Poutaraud, S. Meyer, and Z. G. Cerovic, Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara Viticola, Planta, vol.237, pp.351-361, 2013.

S. Caretto, V. Linsalata, G. Colella, G. Mita, and V. Lattanzio, Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress, Int. J. Mol. Sci, vol.16, pp.26378-26394, 2015.

R. V. Barbehenn and C. Peter-constabel, Tannins in plant-herbivore interactions, Phytochemistry, vol.72, pp.1551-1565, 2011.

V. Cheynier, G. Comte, K. M. Davies, V. Lattanzio, and S. Martens, Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology, Plant. Physiol. Biochem, vol.72, pp.1-20, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01837691

S. M. Mandal, D. Chakraborty, and S. Dey, Phenolic acids act as signaling molecules in plant-microbe symbioses, Plant. Signal. Behav, vol.5, pp.359-368, 2010.

A. Teixeira, J. Eiras-dias, S. D. Castellarin, and H. Geros, Berry phenolics of grapevine under challenging environments, Int. J. Mol. Sci, vol.14, pp.18711-18739, 2013.

A. Krol, R. Amarowicz, and S. Weidner, The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves, J. Plant. Physiol, vol.189, pp.97-104, 2015.

M. Magnin-robert, A. Spagnolo, A. Boulanger, C. Joyeux, C. Clément et al., Changes in Plant Metabolism and Accumulation of Fungal Metabolites in Response to Esca Proper and Apoplexy Expression in the Whole Grapevine, Phytopathology, vol.106, pp.541-553, 2016.

D. Garcia-seco, Y. Zhang, F. J. Gutierrez-manero, C. Martin, and B. Ramos-solano, Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism, PLoS ONE, vol.10, 2015.

U. P. Singh, B. K. Sarma, and D. P. Singh, Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum), Curr. Microbiol, vol.46, pp.131-140, 2003.

M. Lavania, P. S. Chauhan, S. V. Chauhan, H. B. Singh, and C. S. Nautiyal, Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213, Curr. Microbiol, vol.52, pp.363-368, 2006.

A. Barka, E. Nowak, J. Clément, and C. , Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol, vol.72, pp.7246-7252, 2006.

J. Portu, L. Gonzalez-arenzana, I. Hermosin-gutierrez, P. Santamaria, and T. Garde-cerdan, Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content, Food Chem, vol.180, pp.55-63, 2015.

A. Singh, A. Jain, B. K. Sarma, R. S. Upadhyay, and H. B. Singh, Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection, Microbiol. Res, vol.169, pp.353-360, 2014.

P. Vejan, R. Abdullah, T. Khadiran, S. Ismail, and A. Boyce, Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review, Molecules, vol.21, 2016.

C. Martin, Y. Zhang, C. Tonelli, and K. Petroni, Plants, diet, and health, Annu. Rev. Plant. Biol, vol.64, pp.19-46, 2013.

N. Girish and S. Umesha, Effect of plant growth promoting rhizobacteria on bacterial canker of tomato, Arch. Phytopathol. Plant. Prot, vol.38, pp.235-243, 2007.

F. J. Gutierrez-mañero, B. Ramos, J. A. Lucas, A. Probanza, and M. L. Barrientos, Systemic induction of terpenic compounds in D. Lanata, J. Plant. Physiol, vol.160, pp.105-130, 2003.

S. Zhang, M. S. Reddy, and J. W. Kloepper, Tobacco growth enhance-ment and blue mold protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain, Plant. Soil, vol.262, pp.277-288, 2004.

A. Theocharis, S. Bordiec, O. Fernandez, S. Paquis, S. Dhondt-cordelier et al., Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures, Mol. Plant. Microbe, vol.25, pp.241-249, 2012.

O. Fernandez, A. Theocharis, S. Bordiec, R. Feil, L. Jacquens et al., Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism, Mol. Plant. Microbe, vol.25, pp.496-504, 2012.

L. Miotto-vilanova, C. Jacquard, B. Courteaux, L. Wortham, J. Michel et al., Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization, Front. Plant. Sci, 1236.

A. Issa, Q. Esmaeel, L. Sanchez, B. Courteaux, Y. Gibon et al., Aït Barka, E. Impact of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature, Front. Plant. Sci, vol.9, 1397.

F. Su, F. Gilard, F. Guérard, S. Citerne, C. Clément et al., Dhondt-Cordelier, S. Spatio-temporal Responses of Arabidopsis Leaves in Photosynthetic Performance and Metabolite Contents to, Burkholderia phytofirmans PsJN. Front. Plant. Sci, vol.7, p.403, 2016.

O. Fernandez, L. Vandesteene, R. Feil, F. Baillieul, J. E. Lunn et al., Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance, Planta, vol.236, pp.355-369, 2012.

M. Valette, M. Rey, F. Gerin, G. Comte, and F. Wisniewski-dye, A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria, J. Integr. Plant. Biol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02473975

A. Vannozzi, I. B. Dry, M. Fasoli, S. Zenoni, and M. Lucchin, Genome-wide analysis of the grapevine stilbene synthase multigenic family: Genomic organization and expression profiles upon biotic and abiotic stresses, BMC Plant Biol, vol.12, 2012.

N. Nuengchamnong and K. Ingkaninan, On-line characterization of phenolic antioxidants in fruit wines from family myrtaceae by liquid chromatography combined with electrospray ionization tandem mass spectrometry and radical scavenging detection, Food Sci. Technol, vol.42, pp.297-302, 2009.

F. L. Silva, E. M. Schmidt, C. L. Messias, and M. N. Eberlin, Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry, Anal. Methods, vol.7, pp.53-62, 2014.

J. M. Souquet, B. Labarbe, C. Le-guerneve, V. Cheynier, and M. Moutounet, Phenolic composition of grape stems, J. Agric. Food Chem, vol.48, pp.1076-1080, 2000.

R. Flamini, Recent applications of mass spectrometry in the study of grape and wine polyphenols. ISRN Spectrosc, 2013.

B. S. Khoza, S. Gbashi, P. A. Steenkamp, P. B. Njobeh, and N. E. Madala, Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry, S. Afr. J. Bot, vol.103, pp.95-100, 2016.

N. Fang, S. Yu, and R. L. Prior, LC/MS/MS characterization of phenolic constituents in dried plums, J. Agric. Food Chem, vol.50, pp.3579-3585, 2002.

M. Sanz, B. F. De-simon, E. Cadahia, E. Esteruelas, A. M. Munoz et al., LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage, J. Mass Spectrom, vol.47, pp.905-918, 2012.

I. M. Abu-reidah, M. S. Ali-shtayeh, R. M. Jamous, D. Arraez-roman, and A. Segura-carretero, HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem, vol.166, pp.179-191, 2015.

P. Mena, L. Calani, C. Dall'asta, G. Galaverna, C. Garcia-viguera et al., Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn, Molecules, vol.17, pp.14821-14840, 2012.

K. Aaby, D. Ekeberg, and G. Skrede, Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity, J. Agric. Food Chem, vol.55, pp.4395-4406, 2007.

, Int. J. Mol. Sci, vol.20, p.5775, 2019.

M. Zhao, J. Xu, D. Qian, J. Guo, S. Jiang et al., Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS, Biomed. Chromatogr, vol.28, pp.1024-1029, 2014.

K. Billet, B. Houille, T. Duge-de-bernonville, S. Besseau, A. Oudin et al., Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and, Polyphenol Metabolism Structuring. Front. Plant. Sci, vol.9, p.798, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02527596

X. Li, Y. Zhang, X. Zeng, L. Yang, and Y. Deng, Chemical profiling of bioactive constituents in Sarcandra glabra and its preparations using ultra-high-pressure liquid chromatography coupled with LTQ Orbitrap mass spectrometry, Rapid Commun. Mass Spectrom, vol.25, pp.2439-2447, 2011.

M. I. Cantwell, G. Peiser, and E. Mercado-silva, Induction of chilling injury in jicama (Pachyrhizus erosus) roots: Changes in texture, color and phenolics, Postharvest Biol. Technol, vol.25, pp.311-320, 2002.

I. I. Rockenbach, E. Jungfer, C. Ritter, B. Santiago-schübel, B. Thiele et al., Characterization of flavan-3-ols in seeds of grape pomace by, Food Res. Int, vol.48, pp.848-855, 2012.

A. K. Sandhu and L. Gu, Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine Grapes) As determined by HPLC-DAD-ESI-MS(n), J. Agric. Food Chem, vol.58, pp.4681-4692, 2010.

L. Montero, M. Herrero, M. Prodanov, E. Ibanez, and A. Cifuentes, Characterization of grape seed procyanidins by comprehensive two-dimensional hydrophilic interaction x reversed phase liquid chromatography coupled to diode array detection and tandem mass spectrometry, Anal. Bioanal. Chem, vol.405, pp.4627-4638, 2013.

I. Nawrot-hadzik, S. Slusarczyk, S. Granica, J. Hadzik, and A. Matkowski, Phytochemical Diversity in Rhizomes of Three Reynoutria Species and their Antioxidant Activity Correlations Elucidated by LC-ESI-MS/MS Analysis, Molecules, vol.24, 1136.

L. Bavaresco, M. Fregoni, M. Trevisan, F. Mattivi, U. Vrhovsek et al., The occurrence of the stilbene piceatannol in grapes, vol.41, pp.133-136, 2002.

T. Rodriguez-cabo, I. Rodriguez, P. Lopez, M. Ramil, and R. Cela, Investigation of liquid chromatography quadrupole time-of-flight mass spectrometry performance for identification and determination of hydroxylated stilbene antioxidants in wine, J. Chromatogr, vol.1337, pp.162-170, 2014.

R. Flamini, A. Zanzotto, M. De-rosso, G. Lucchetta, A. D. Vedova et al., Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection, Physiol. Mol. Plant. Pathol, vol.93, pp.112-118, 2016.

I. M. Tavares, E. Silva-lago-vanzela, L. Portugal-gomes-rebello, A. Mota-ramos, S. Gómez-alonso et al., Hermosín-Gutiérrez, I. Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels), Food Res. Int, vol.82, pp.1-13, 2016.

A. Romani, M. Campo, and P. Pinelli, HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species, Food Chem, vol.130, pp.214-221, 2012.

E. Dorta, M. González, M. G. Lobo, C. Sánchez-moreno, and B. De-ancos, Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient, Food Res. Int, vol.57, pp.51-60, 2014.

D. Gu, Y. Yang, M. Bakri, Q. Chen, X. Xin et al., A LC/QTOF-MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers, Phytochem. Anal, vol.24, pp.661-670, 2013.

A. Chamam, H. Sanguin, F. Bellvert, G. Meiffren, G. Comte et al., Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association, Phytochemistry, vol.87, pp.65-77, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522228

R. Gupta, S. Tiwari, S. K. Saikia, V. Shukla, R. Singh et al., Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in bacopa monnieri L, Protoplasma, vol.252, pp.53-61, 2015.

L. Roy, J. Huss, B. Creach, A. Hawkins, S. Neutelings et al., Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Front, Plant. Sci, vol.7, p.735, 2016.

, Int. J. Mol. Sci, vol.20, p.5775, 2019.

A. F. Sanchez-maldonado, A. Schieber, and M. G. Ganzle, Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria, J. Appl. Microbiol, vol.111, pp.1176-1184, 2011.

A. T. Bernal-mercado, F. J. Vazquez-armenta, M. R. Tapia-rodriguez, M. A. Islas-osuna, V. Mata-haro et al., Comparison of Single and Combined Use of Catechin, Protocatechuic, and Vanillic Acids as Antioxidant and Antibacterial Agents against Uropathogenic Escherichia Coli at Planktonic and Biofilm Levels, Molecules, vol.23, 2018.

J. M. Landete, Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health, Food Res. Int, vol.44, pp.1150-1160, 2011.

A. Bézier, B. Lambert, and F. Baillieul, Study of defense-related gene expression in grapevine leaves and berries Infected with Botrytis cinerea, Eur. J. Plant. Pathol, vol.108, pp.111-120, 2002.

C. Mutawila, C. Stander, F. Halleen, M. A. Vivier, and L. Mostert, Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: Expression of defence-related genes and phenotypes, vol.254, pp.863-879, 2017.

M. C. Dufour, N. Magnin, B. Dumas, S. Vergnes, and M. F. Corio-costet, High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays, BMC Genom, vol.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607350

C. Nopo-olazabal, J. Condori, L. Nopo-olazabal, and F. Medina-bolivar, Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide, Plant Physiol. Biochem, vol.74, pp.50-69, 2014.

A. Kortekamp, Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen, Plant Physiol. Biochem, vol.44, pp.58-67, 2006.

B. C. Akinwumi, K. M. Bordun, and H. D. Anderson, Biological Activities of Stilbenoids, Int. J. Mol. Sci, vol.19, 2018.

M. Murias, W. Jager, N. Handler, T. Erker, Z. Horvath et al., Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure-activity relationship, Biochem. Pharm, vol.69, pp.903-912, 2005.

Z. Ovesna, K. Kozics, Y. Bader, P. Saiko, N. Handler et al., hexahydroxy-trans-stilbene in three leukemia cell lines, Oncol. Rep, vol.16, pp.617-624, 2006.

H. Temsamani, S. Krisa, M. Decossas-mendoza, O. Lambert, J. M. Merillon et al., Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against alpha-Synuclein Aggregation and Cytotoxicity, Nutrients, vol.8, p.367, 2016.

E. Cantos, J. C. Espin, and F. A. Tomas-barbera, Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS, J. Agric. Food Chem, vol.50, pp.5691-5696, 2002.

E. Q. Xia, G. F. Deng, Y. J. Guo, and H. B. Li, Biological activities of polyphenols from grapes, Int. J. Mol. Sci, vol.11, pp.622-646, 2010.

J. Armero, R. Requejo, J. Jorrin, R. Lopez-valbuena, and M. Tena, Release of phytoalexins and related iso-flavonoids from intact chickpea seedlings elicited withreduced glutathione at root level, Plant Physiol. Biochem, vol.39, pp.785-795, 2001.

L. A. Weston and U. Mathesius, Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy, J. Chem. Ecol, vol.39, pp.283-297, 2013.

S. Hassan and U. Mathesius, The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions, J. Exp. Bot, vol.63, pp.3429-3444, 2012.

Y. Yilmaz and R. T. Toledo, Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid, J. Agric. Food Chem, vol.52, pp.255-260, 2004.

F. Ursini, I. Rapuzzi, R. Toniolo, F. Tubaro, and G. Bontempelli, Characterization of antioxidant effect of procyanidins, Methods Enzym, vol.335, pp.338-350, 2001.

M. Larrosa, M. T. Garcia-conesa, J. C. Espin, F. A. Tomas-barberan, and . Ellagitannins, Mol. Asp. Med, vol.31, pp.513-539, 2010.

C. Braicu, V. Pilecki, O. Balacescu, A. Irimie, and I. B. Neagoe, The relationships between biological activities and structure of flavan-3-ols, Int. J. Mol. Sci, vol.12, pp.9342-9353, 2011.

, Int. J. Mol. Sci, vol.20, p.5775, 2019.

P. Doshi, P. Adsule, and K. Banerjee, Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation, Int. J. Food Sci, vol.41, pp.1-9, 2006.

H. Dietrich and M. S. Pour-nikfardjam, Influence of Phenolic Compounds and Tannins on Wine-Related Microorganisms, Biology of Microorganisms on Grapes

H. König, G. Unden, and J. Fröhlich, , pp.307-347, 2009.

N. G. Irani and E. Grotewold, Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells, BMC Plant Biol, vol.5, 2005.

N. Fontes, H. Geros, and S. Delrot, Grape Berry Vacuole: A Complex and Heterogeneous Membrane System Specialized in the Accumulation of Solutes, Am. J. Enol. Vitic, vol.62, pp.270-278, 2011.

C. H. Shih, S. O. Siu, R. Ng, E. Wong, L. C. Chiu et al., Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings, J. Agric. Food Chem, vol.55, pp.254-259, 2007.

P. H. Shih, C. T. Yeh, and G. C. Yen, Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis, J. Agric. Food Chem, vol.55, pp.9427-9435, 2007.

L. Bassolino, Y. Zhang, H. J. Schoonbeek, C. Kiferle, P. Perata et al., Accumulation of anthocyanins in tomato skin extends shelf life, New Phytol, pp.650-655, 0200.

Y. Zhang, E. Butelli, R. De-stefano, H. J. Schoonbeek, A. Magusin et al., Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold, Curr. Biol, vol.23, pp.1094-1100, 2013.

G. Goetz, A. Fkyerat, N. Metais, M. Kunz, R. Tabacchi et al., Resistance factors to grey mould in grape berries: Identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase, Phytochemistry, vol.52, pp.759-767, 1999.

E. O. King, M. K. Ward, and D. E. Raney, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med, vol.44, pp.301-307, 1954.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI