F. Ahmad, I. Ahmad, and M. S. Khan, Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities, Microbiol. Res, vol.163, pp.173-181, 2008.

A. Almario, M. Kyselková, J. Kopecký, M. Ságová-mare?ková, D. Muller et al., Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France), Plant Soil, vol.371, pp.397-408, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522203

J. Almario, D. Gobbin, G. Défago, Y. Moënne-loccoz, and F. Rezzonico, Prevalence of type III secretion system in effective biocontrol pseudomonads, Res. Microbiol, vol.165, pp.300-304, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010566

J. Almario, D. Muller, G. Défago, and Y. Moënne-loccoz, Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco, Environ. Microbiol, vol.16, pp.1949-1960, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010573

M. Arese, W. G. Zumft, and F. Cutruzzolà, Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri, Protein Expr. Purif, vol.27, pp.42-48, 2003.

H. P. Bais, T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco, The role of root exudates in rhizosphere interactions with plants and other organisms, Annu. Rev. Plant Biol, vol.57, pp.233-266, 2006.

P. A. Bakker, D. C. Glandorf, M. Viebahn, T. W. Ouwens, E. Smit et al., Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat, Antonie Van Leeuwenhoek, vol.81, pp.617-624, 2002.

P. A. Bakker, C. M. Pieterse, and L. C. Van-loon, Induced systemic resistance by fluorescent Pseudomonas spp, Phytopathology, vol.97, pp.239-243, 2007.

E. Barahona, A. Navazo, F. Martínez-granero, T. Zea-bonilla, R. M. Pérez-jiménez et al., Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens, Appl. Environ. Microbiol, vol.77, pp.5412-5419, 2011.

M. Barret, P. Frey-klett, M. Boutin, A. Guillerm-erckelboudt, F. Martin et al., The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf 29Arp, New Phytol, vol.181, pp.77-136, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00359115

E. Baudoin, A. Lerner, M. S. Mirza, H. El-zemrany, C. Prigent-combaret et al., Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere, Res. Microbiol, vol.161, pp.219-226, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00525767

E. Baudouin and J. T. Hancock, Nitric oxide signaling in plants, Front. Plant Sci, vol.4, p.553, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01560075

G. Berg and K. Smalla, Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere, FEMS Microbiol. Ecol, vol.68, pp.1-13, 2009.

J. N. Brazelton, E. E. Pfeufer, T. A. Sweat, B. B. Gardener, and C. Coenen, , vol.2, 2008.

, Mol. Plant Microbe Interact, vol.21, pp.1349-1358

M. Bruto, C. Prigent-combaret, D. Muller, and Y. Moënne-loccoz, Analysis of genes contributing to plant-beneficial functions in plant growthpromoting rhizobacteria and related Proteobacteria, Sci. Rep, vol.4, p.6261, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02487456

J. C. Clifford, A. Buchanan, O. Vining, T. A. Kidarsa, J. H. Chang et al., Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens, Environ. Microbiol, 2015.

E. Combes-meynet, J. F. Pothier, Y. Moënne-loccoz, and C. Prigent-combaret, The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion, Mol. Plant Microbe Interact, vol.24, pp.271-284, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02540457

R. Costa, N. C. Gomes, E. Krögerrecklenfort, K. Opelt, G. Berg et al., Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses, Environ. Microbiol, vol.9, pp.2260-2273, 2007.

R. Costa, M. Götz, N. Mrotzek, J. Lottmann, G. Berg et al., Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds, FEMS Microbiol. Ecol, vol.56, pp.236-249, 2006.

O. Couillerot, A. Ramírez-trujillo, V. Walker, A. Von-felten, J. Jansa et al., Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02522189

J. T. Arnould, C. Deulvot, C. Lemanceau, P. Gianinazzi-pearson, V. Raaijmakers et al., Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species, Appl. Microbiol. Biotechnol, vol.97, pp.966-975, 2003.

J. T. De-souza, J. M. Raaijmakers, S. De-weert, H. Vermeiren, I. H. Mulders et al., Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens, Mol. Plant Microbe Interact, vol.43, pp.1173-1180, 2002.

B. J. Duijff, V. Gianinazzi-pearson, and P. Lemanceau, Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r, New Phytol, vol.135, pp.325-334, 1997.

C. Dunne, Y. Moënne-loccoz, J. Mccarthy, P. Higgins, J. Powell et al., Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet, Plant Pathol, vol.47, pp.299-307, 1998.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

U. Edwards, T. Rogall, H. Blöcker, M. Emde, and E. C. Böttger, Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA, Nucleic Acids Res, vol.17, pp.7843-7853, 1989.

D. Egamberdieva, G. Berg, K. Lindström, and L. A. Räsänen, Coinoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder Galega (Galega orientalis Lam.), Eur. J. Soil Biol, vol.46, pp.269-272, 2010.

M. Frapolli, G. Défago, and Y. Moënne-loccoz, Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4-diacetylphloroglucinol, Environ. Microbiol, vol.9, pp.1939-1955, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00260525

M. Frapolli, G. Défago, and Y. Moënne-loccoz, Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco, Soil Biol. Biochem, vol.42, pp.649-656, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00525760

M. Frapolli, Y. Moënne-loccoz, J. Meyer, and G. Défago, A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils, FEMS Microbiol. Ecol, vol.64, pp.468-481, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02555009

M. Frapolli, J. F. Pothier, G. Défago, and Y. Moënne-loccoz, Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads, Mol. Phylogenet. Evol, vol.63, pp.877-890, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02532816

T. L. Friesen, E. H. Stukenbrock, Z. Liu, S. Meinhardt, H. Ling et al., Emergence of a new disease as a result of interspecific virulence gene transfer, Nat. Genet, vol.38, pp.953-956, 2006.

I. E. García-de-salamone, R. K. Hynes, and L. M. Nelson, Cytokinin production by plant growth promoting rhizobacteria and selected mutants, Can. J. Microbiol, vol.47, pp.404-411, 2001.

D. Garrido-sanz, J. P. Meier-kolthoff, M. Göker, M. Martín, R. Rivilla et al., Genomic and genetic diversity within the Pseudomonas fluorescens complex, PLoS ONE, vol.11, 2016.

B. R. Glick, Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase, FEMS Microbiol. Lett, vol.251, pp.1-7, 2005.

B. R. Glick, D. M. Penrose, L. , and J. , A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria, J. Theor. Biol, vol.190, pp.63-68, 1998.

E. Glickmann and Y. Dessaux, A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria, Appl. Environ. Microbiol, vol.61, pp.793-796, 1995.

M. Gomila, A. Peña, M. Mulet, J. Lalucat, and E. García-valdés, Phylogenomics and systematics in Pseudomonas, Evol. Genomic Microbiol, vol.6, p.214, 2015.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

D. Haas and G. Défago, Biological control of soil-borne pathogens by fluorescent pseudomonads, Nat. Rev. Microbiol, vol.3, pp.307-319, 2005.

M. Höfte, J. Boelens, and W. Verstraete, Survival and root colonization of mutants of plant growth-promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production, J. Plant Nutr, vol.15, pp.2253-2262, 1992.

G. Holguin and B. R. Glick, Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the TetR gene promoter improves its fitness and plant growth promoting ability, Microb. Ecol, vol.46, pp.122-133, 2003.

Ö. Inceo?lu, J. Falcão-salles, and J. D. Van-elsas, Soil and cultivar type shape the bacterial community in the potato rhizosphere, Microb. Ecol, vol.63, pp.460-470, 2012.

C. Keel, P. H. Wirthner, T. H. Oberhänsli, C. Voisard, D. Haas et al., Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco, Symbiosis, vol.9, pp.327-341, 1990.

K. Kim, Y. Yang, and J. Kim, Purification and characterization of chitinase from Streptomyces sp. M-20, J. Biochem. Mol. Biol, vol.36, pp.185-189, 2003.

R. Kolde, Pheatmap: Pretty Heatmaps. R Package Version, p.61, 2012.

M. Kyselková, J. Kopecký, M. Frapolli, G. Défago, M. Ságová-marecková et al., Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease, ISME J, vol.3, pp.1127-1138, 2009.

B. B. Landa, H. A. De-werd, B. B. Gardener, and D. M. Weller, Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere, Phytopathology, vol.92, pp.129-137, 2002.

E. Latz, N. Eisenhauer, B. C. Rall, S. Scheu, J. et al., Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils, Sci. Rep, vol.6, p.23584, 2016.

F. A. Leij, J. E. Dixon-hardy, and J. M. Lynch, Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium, Biol. Fertil. Soils, vol.35, pp.114-121, 2002.

P. Lemanceau, A. , and C. , Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium, Crop Prot, vol.10, p.90006, 1991.

J. E. Loper, K. A. Hassan, D. V. Mavrodi, E. W. Davis, C. K. Lim et al., Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions, PLoS Genet, vol.8, p.1002784, 2012.

A. M. Luján, P. Gómez, and A. Buckling, Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil, Biol. Lett, vol.11, 2015.

P. Marschner, C. Yang, R. Lieberei, and D. E. Crowley, Soil and plant specific effects on bacterial community composition in the rhizosphere, Soil Biol. Biochem, vol.33, pp.1437-1445, 2001.

D. V. Mavrodi, W. Blankenfeldt, and L. S. Thomashow, Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation, Annu. Rev. Phytopathol, vol.44, pp.417-445, 2006.

S. Mazurier, T. Corberand, P. Lemanceau, and J. M. Raaijmakers, Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt, ISME J, vol.3, pp.977-991, 2009.

M. Gardener, B. B. Mavrodi, D. V. Thomashow, L. S. Weller, and D. M. , A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria, Phytopathology, vol.91, pp.44-54, 2001.

J. B. Meyer, M. Frapolli, C. Keel, and M. Maurhofer, Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads, Appl. Environ. Microbiol, vol.77, pp.7345-7354, 2011.

J. B. Meyer, M. P. Lutz, M. Frapolli, M. Péchy-tarr, L. Rochat et al., Interplay between wheat cultivars, biocontrol pseudomonads, and soil, Appl. Environ. Microbiol, vol.76, pp.6196-6204, 2010.

M. S. Mirza, S. Mehnaz, P. Normand, C. Prigent-combaret, Y. Moënne-loccoz et al., Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth, Biol. Fertil. Soils, vol.43, pp.163-170, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02553871

M. Mulet, J. Lalucat, and E. García-valdés, DNA sequence-based analysis of the Pseudomonas species, Environ. Microbiol, vol.12, 2010.

T. Münkemüller, S. Lavergne, B. Bzeznik, S. Dray, T. Jombart et al., How to measure and test phylogenetic signal, Methods Ecol. Evol, vol.3, pp.743-756, 2012.

P. R. Naik, G. Raman, K. B. Narayanan, and N. Sakthivel, Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil, BMC Microbiol, vol.8, p.230, 2008.

P. R. Naik, N. Sahoo, D. Goswami, N. Ayyadurai, and N. Sakthivel, Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana, Microb. Ecol, vol.56, pp.492-504, 2008.

T. Oberhänsli, G. Défago, and D. Haas, Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase, J. Gen. Microbiol, vol.137, pp.2273-2279, 1991.

D. J. O'sullivan and F. Gara, Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens, Microbiol. Rev, vol.56, pp.662-676, 1992.

C. Picard and M. Bosco, Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations, FEMS Microbiol. Ecol, vol.53, pp.349-357, 2005.

C. Picard, E. Frascaroli, and M. Bosco, Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing rhizobacteria are differentially affected by the genotype of two maize inbred lines and their hybrid, FEMS Microbiol. Ecol, vol.49, pp.207-215, 2004.

F. Poly, L. J. Monrozier, and R. Bally, Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil, Res. Microbiol, vol.152, pp.95-103, 2001.

C. Prigent-combaret, D. Blaha, J. F. Pothier, L. Vial, M. Poirier et al., Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria, FEMS Microbiol. Ecol, vol.65, pp.202-219, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02555008

J. M. Raaijmakers, I. De-bruijn, and M. J. De-kock, Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation, Mol. Plant Microbe Interact, vol.19, pp.699-710, 2006.

N. Rameshkumar, N. Ayyadurai, N. Kayalvizhi, and P. Gunasekaran, Genotypic and phenotypic diversity of PGPR fluorescent pseudomonads isolated from the rhizosphere of sugarcane, 2012.

, J. Microbiol. Biotechnol, vol.22, pp.13-24

A. Ramette, Y. Moënne-loccoz, and G. Défago, Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot, FEMS Microbiol. Ecol, vol.44, pp.35-43, 2003.

A. Ramette, Y. Moënne-loccoz, and G. Défago, Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco, FEMS Microbiol. Ecol, vol.55, pp.369-381, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02553873

A. Rana, B. Saharan, M. Joshi, R. Prasanna, K. Kumar et al., Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat, Ann. Microbiol, vol.61, pp.893-900, 2011.

O. Rice, S. H. Miller, J. P. Morrissey, and F. Gara, Exploitation of glucose catabolic gene fusions to investigate in situ expression during Pseudomonas-plant interactions, Biol. Fertil. Soils, vol.48, pp.235-238, 2011.

A. E. Richardson, J. Barea, A. M. Mcneill, and C. Prigent-combaret, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, Plant Soil, vol.321, pp.305-339, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00525548

R. K. Sarma, A. Gogoi, B. Dehury, R. Debnath, T. C. Bora et al., Community profiling of culturable fluorescent pseudomonads in the rhizosphere of green gram (Vigna radiata L.), PLoS ONE, vol.9, p.108378, 2014.

A. Simon and E. H. Ridge, The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads, J. Appl. Bacteriol, vol.37, pp.459-460, 1974.

S. Simon and J. Petrá?ek, Why plants need more than one type of auxin, Plant Sci. Int. J. Exp. Plant Biol, vol.180, pp.454-460, 2011.

S. Spaepen, J. Vanderleyden, and Y. Okon, Chapter 7 Plant growthpromoting actions of rhizobacteria, Adv. Bot. Res, vol.51, pp.283-320, 2009.

R. Srivastava, A. Khalid, U. S. Singh, and A. K. Sharma, Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt, Biol. Control, vol.53, pp.24-31, 2010.

M. Szkop and W. Bielawski, A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid, Antonie Van Leeuwenhoek, vol.103, pp.683-691, 2012.

L. S. Thomashow and D. M. Weller, Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici, J. Bacteriol, vol.170, pp.3499-3508, 1988.

I. N. Throbäck, K. Enwall, Å. Jarvis, and S. Hallin, Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE, FEMS Microbiol. Ecol, vol.49, pp.401-417, 2004.

J. Troxler, M. Zala, Y. Moënne-loccoz, C. Keel, and G. Défago, Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHA0 in the surface horizon of large outdoor lysimeters, Appl. Environ. Microbiol, vol.63, pp.3776-3782, 1997.

J. Vacheron, E. Combes-meynet, V. Walker, B. Gouesnard, D. Muller et al., Expression on roots and contribution to maize phytostimulation of 1-aminocyclopropane-1-decarboxylate deaminase gene acdS in Pseudomonas fluorescens F113, Plant Soil, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02466011

J. Vacheron, G. Desbrosses, M. Bouffaud, B. Touraine, Y. Moënne-loccoz et al., Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci, vol.4, p.356, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522224

J. Vacheron, S. Renoud, D. Muller, O. O. Babalola, and C. Prigent-combaret, Alleviation of abiotic and biotic stresses in plants by Azospirillum, Handbook for Azospirillum, pp.333-365, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02457880

W. N. Venables and D. M. Smith, The R Development Core Team, vol.2, pp.4-13, 2011.

V. Walker, C. Bertrand, F. Bellvert, Y. Moënne-loccoz, R. Bally et al., Host plant secondary metabolite profiling shows a complex, straindependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum, New Phytol, vol.189, pp.494-506, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00529161

V. Walker, O. Couillerot, A. V. Felten, F. Bellvert, J. Jansa et al., Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions, Plant Soil, vol.356, pp.151-163, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00723509

C. Wang, E. Knill, B. R. Glick, and G. Défago, Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities, Can. J. Microbiol, vol.46, pp.898-907, 2000.

D. M. Weller, Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopathol, vol.26, 1988.

D. M. Weller and R. J. Cook, Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads, Phytopathology, vol.73, pp.463-469, 1983.

S. Yadav, S. Yadav, R. Kaushik, A. K. Saxena, and D. K. Arora, Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop, J. Basic Microbiol, vol.54, pp.425-437, 2014.