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ABSTRACT

Background: The variation of the anterolateral ligament (ALEngth during knee motion is
still unclear, and the knee position in which aoretruction graft should be tensioned
remains controversialhe objective of this study was to determine theati@n of the ALL
length during knee motion using a three-dimensiopabelectronic system.

Methods: Kinematic analyses of 20 cadaveric knees were pwadgd using a Motion
Analysis® system. The variability of the measuretaemade during the five acquisition
cycles was studied. Reliability was evaluated by eparate measurement sessions, with
complete system reinstallation, using differentasats and a new operator. The ALL length
was analysed from extension to full flexion in #aretational conditions.

Findings: When analysing the reliability of the five cyclé?% of the measurements we
found to have an Intra Class Correlation (ICC) 50.8he reproducibility of inter-sessional
measures by different operators and different cadawas either good (ICC >0.75) or
excellent (ICC >0.85). The ALL length was maximumfull internal rotation with the knee
at 25° of flexion.

Interpretation: This three-dimensional optoelectronic protocol wld us to analyse the
variation of the ALL length during intact knee nmastiwith good reliability and the required
accuracy to analyse this variable. The maximal teramnd highest tension of the ALL was
reported at 25° of knee flexion in internal rotatisuggesting this as the optimal position for
the knee joint when tensioning an ALL reconstruttio

KEYWORDS. knee, Anterolateral ligament, kinematic, lengthtoelectronic system
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INTRODUCTION

Good control of rotational stability after intratiaular anterior cruciate ligament (ACL)
reconstruction is not always achieved and therehbe@n a renewed interest in the role of
extra-articular structures, among them the antedhligament (ALL) (Claes et al., 2013;
Neri et al., 2018a). Combined ACL and ALL reconstions in ACL deficient knee have
been suggested to offer clinical and biomecharacidantages in controlling anterolateral
rotational laxity more than an isolated ACL reconstion in ACL-deficient knee (Geeslin et
al., 2018b; Sonnery-Cottet et al., 2015). DuringLAleconstruction it is necessary to fix the
graft in a position close to its maximum lengthrresponding to its range of action, in order
to restore normal biomechanics, and avoid inswfictension or overconstraint. To date there
is no consensus on this point and different surgezhniques have subsequently appeared,
fixing the graft either with the knee in full exsan (Sonnery-Cottet et al., 2015), at 30°of
flexion (Chahla et al., 2016), or at 90° of flexidielito et al., 2015). A detailed
understanding of the biomechanical behaviour ofAhk is therefore required to facilitate an
optimal reconstruction technique.

The first studies undertaken to evaluate the variadf the ALL length were static analyses
using digital calipers measurements at predetemmilexion and rotational values (Claes et
al., 2013; Neri et al., 2017; Runer et al., 20T®kee-dimensional imaging analyses have also
been used (Helito et al., 2014; Kernkamp et all62&/an de Velde et al., 2016; Wieser et al.,
2017). Although having the advantage to be perfdromein vivo subjects, these models were
created from theoretical insertions points, whiod difficult to identify on MRI and subject
to significant inter-individual variability (Daggeét al., 2016; Neri et al., 2018b; Parker and
Smith, 2016). Other studies used freedom robotstesys or knee rig systems (Dodds et al.,
2014; Drews et al., 2017; Geeslin et al., 2018#] Kt al., 2015; Parsons et al., 2015). These
systems have excellent reliability and optimal mien by dispensing with manipulation by a
human operator. Yet all these studies used isolategs, with sectioning of the musculo-
tendinous structures around the knee, such asitepsbfemoris tendon and lliotibial Band
(ITB) subsequently losing their contribution to thetational stability of the knee and
potentially affecting the ALL function (LaPrade &t, 2005; Rahnemai-Azar et al., 2016).
Surgical navigation systems designed for prosthetée surgery have also been used with the
advantage of conserving the full leg and the ITBr{@nzinga et al., 2016; Imbert et al.,
2016). However, these studies assessed the ALltHemghout combining both continuous
flexion and rotation kinematics. Internal rotatisas applied only for some target flexion
values (20 and 90° for Imbert, and 30 and 90° fondhzinga). In addition, these systems use
few cameras with lower data acquisition frequenciesking it difficult to assess the
biomechanical behaviour of the ALL (Guler et aD13).

Consequently, there are contradictions in currémmbchanical results when describing the
variation in ALL length during motion leading toconstancies about the position of the knee
at which the ALL is at maximum length. We hypotlsesi that the use of another
measurement device, a three-dimensional optoetgctrgystem, such as the Motion
analysis®, would allow the assessment of combinedticuous flexion and rotation
kinematics and lead to an accurate and reliablesamement of the ALL length. The objective
of this study was therefore to determine the viameadf the ALL length during knee motion.
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METHODS

1. Specimen prepar ation

Twenty-two intact knees from 11 fresh frozen cadavepecimens were used. The specimens
were thawed out at room temperature for 24 houts silowed no signs of degeneration.
Exclusion criteria were examination signs of kneetability (anterior tibial drawer and
positive pivot-shift test), evidence of prior knsargery or ACL reconstruction, severe
deformities or severe knee osteoarthritis. An ambexdial knee arthroscopy was performed to
confirm the Anterior Cruciate Ligament (ACL) statéstotal of two knees were subsequently
excluded and 20 intact knees without ACL and ALjuires were included. There were 5
men and 5 women with a mean age of 68.9 yearsdrd&ifgto 85).

We used the full leg and pelvis in order to presehe entire length of the ITB and all other
synergistic bi-articular structures crossing thp &nd/or the knee. The dissection protocol
used to define the ALL was described in a previaugtomical study (Neri et al., 2017). The
number of incisions was kept to the strict minimumorder to limit their effects, and they
were always made in line with the tendinous fibiés.lateral structures were removed. The
femoral origin of the ALL was always posterior ampdoximal to the lateral femoral
epicondyle and its tibial insertion was posteriorGerdy’s tubercle, anterior to the fibular
head and distal to the articular cartilage of thteral tibial plateau. At the end of the
dissection, once the insertions were recorded #ed acquisitions made, the ITB was
anatomically closed.

2. Experimental set-up

Superior acetabular screws fixed the pelvis totéide and the cadavers were positioned to
allow free range of motion of the knee over theeedfjithe table (Figures 1B and 1C).
Kinematic analysis was performed using a Motion ggsia® (Motion Analysis corp., Santa
Rosa, CA, USA) stereophotogrammetry system. Théesysonsisted of 8 high-definition
Raptor-E® cameras operating at 100 Hz (Figure Mgr installation and calibration around
the working area the system followed retro-refieetsensors (Targets). A pelvic marker was
defined from 3 targets fixed on the ipsilateralesiatr superior iliac spine. The femur and the
tibia were equipped with 4 targets each: F1 toid Bl to T4 (Figure 2). These targets were
fixed using bi-cortical pins placed in such a wayta leave free the muscles and ligaments.
Three points are sufficient to reconstruct the moemsts of a solid in space, and the use of the
fourth provided a backup in the event of disengag@nof a target or temporary masking.
Using a navigation probe, points of interest weextnidentified. The epicondyles and
malleoli were then calculated (Figure 2, purplestérom these palpated points (Figure 2,
purple circles). The centre of the hip was cal@addtinematically via circumduction (Gamage
and Lasenby, 2002) to overcome the hip movemennhgumee motion (Figure 2, purple
star). The centre of Inter Condylar Eminences (I@&}¥ located arthroscopically. The set of
points determines the axes and the femoral aral tisierences as defined in ISB conventions
and the work of Grood and Suntay (Grood and Surit@83; Wu et al., 2002). The centre of
the tibial and femoral insertion points of the Aldere identified by internally rotating the
tibia and determining the course of the centrahrigntous fibres coming under the most
tension; the position for the optimal surgical nestouction.

3. Deter mining the Change in Length of the ALL

The study was divided into two separate sessiori)dénees each, separated by one month
and performed by two different operators in order a@ppreciate the reliability of the
experimental process. The knees were differentdetvthe two sessions.
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We studied the knee flexion kinematics in threded#nt test conditions: Forced internal
rotation (IR) Forced external rotation (ER) and tnalurotation (NR. For NR, the foot was
placed in neutral rotation and the tibia in itsueed position with respect to the femur with
unconstrained tibial rotation. A dynamometric taqig triggering at 5nm, placed above the
ankle at the axis of rotation joint and fixed bpigs, provided rotation (Figure 3).

The knee was flexed manually by moving the tibiatiee to the femur from complete
extension to 90° of flexion while controlling thetation with the dynamometric torque rig. In
every test condition, this movement was repeates times and performed with a very slow
speed of 5 seconds per movement corresponding average speed of Pl / 10 = 0.3 Rdd.s
After processing the kinematics using Cortex® safty the data was filtered (Butterworth
filter of order 4 with a cut off frequency of 6 Hagcording to Winter and Pezzack (Pezzack
et al., 1977; Winter et al., 1974). The recordeié deas interpolated to obtain values from full
extension to 90° of flexion at each degree of fiexiTherefore, we could determine the
internal-external rotation angle (ROT) and the ahse between the femoral and tibial
insertions of the ALL (ALL length) during the fulinge of knee motion (Figure 4).

4. Statistical analysis

All statistical analyses were performed using SPS®®ware (IBM, Armonk, New York,
United States).

Initial statistical analysis was for reliability ofhe five cycles during the kinematic
acquisitions for the three conditions of rotatidR,(ER and NR) and for both variables of
interest (ROT, ALLlength). This analysis included the knees (n=20 knees). A statistical
test of the intraclass correlation coefficient ()G&as used for each measured variable (ROT,
ALLlength). According to Smith-Crowe et al., ICC svaonsidered good if it was0.75 and
excellent if it was> 0.85 (Smith-Crowe et al., 2013). For acceptingwdeithout modification,

a threshold of 0.85 was required. Two-way mixed IC&lculations with an absolute
agreement search were performed. A second statistialysis was performed to evaluate the
reliability of our protocol between the two separateasurement sessions (for each session,
n=10 knees). Using the statistical method descrédimae, we calculated the mean curves of
the measurements (ROT, ALLlength) during the twasams for the three test conditions (IR,
ER and NR). The ICC of these average curves was dakulated from the data from these
two sessions (two-way randomized ICC). In ordezdmpare the lengths of ALL between the
IR, NR and ER, a variance analysis study (ANOVA)swperformed on repeated
measurements. P values less than 0.05 were coediditistically significant.
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RESULTS

Accuracy and Reliability

The average error of target positioning was coestbt less than 0.15 mm and the
measurement error of the angles was less tharegr2eis.

In the first analysis on the reliability of the divcycles, ICCs were performed for 120
measurements. 82% of these values had an ICC >a@@8lid not require curve suppression.
15% required the removal of one curve to obtaihCGD > 0.85. 3% required the removal of 2
curves. In one case, the worst, the ICC after reof/2 curves was 0.76. Figure 5 illustrates
the variability of the measurements (acquisitidos)y knee.

The second analysis showed either good or exceligmbducibility between the two sessions
with different operators and different knees. Fer ROT measurement, the ICC was 0.93 in
IR and 0.83 in ER. For the ALL length measurem#, ICCs were 0.86 in IR, 0.99 in ER,
and 0.98 in NR.

Determining the Change in Length of the ALL

After determination of the femoral and tibial insem points of the ALL, it was then possible
to measure the length of the ALL throughout théfashge of motion. This length was studied
for the 3 rotational conditions in order to detammithe flexion and rotation conditions for
which the ALL was overtight (maximum length). Thevas a significant difference for ALL
length between the IR and the NR rotation (p<0.0@hgtever the knee flexion (Figure 6). In
contrast, there was no significant difference betwdlR and ER (p>0.05). The ALL length
was maximum in IR at 25 ° of knee flexion. It stobide noted that there is considerable
variation in ALL length between individual knee speens, which is indicated in figure 6 as
the extended error bars for the ALL length at défe degrees of knee flexion.
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DISCUSSION

By using an accurate and reliable three-dimensiopabelectronic system, we were able to
analyse the variation in length of the ALL duringtion in an intact knee. We demonstrated
that its maximum length was in IR at 25° of knexiibn.

Compared to other experimental tools, such as i@b8D scan model and traditional
navigation systems, our protocol was the firstde a stereophotogrammetry system such as
Motion analysis®, recognized as the current golhdard for an instrument evaluating
kinematics in three-dimensions. This measuremenitaibowed us to obtain continuous knee
kinematics combining flexion and rotation in a fudwer limb with all the bi-articular
structures conserved. By determining the chanderigth of the ALL during knee motion,
the aim of this study has been fulfilled with tleguired accuracy to analyse the small change
in this variable and with good reproducibildfthe kinematic assessments.

Experimental accuracy depends on the type of sefigation used, the number and
configuration of the cameras used and the sizeeoWork volume. To reduce the incidence of
experimental errors, we used a large number of 8@ HD cameras), a volume restricted
to the maximum (0.8 m / 1.2 m / 1.5 m), stable béiration, and a wide inter-distance
between two targets. The mean error was always tless 0.15 mm and the angle
measurement error was less than 0.2 degrees. iidtecpl therefore has optimal precision for
acquisition of data and far greater than when d@teng the centre of the anatomical
insertions; the ALL insertion points cover areagr% mni and it is difficult to precisely
evaluate the centre. In order to minimize this biall dissections were made by an
experienced operator who observed the positiohe®l L during internal tibial rotation.
Regarding the reproducibility, this protocol demoaied a good intra-rater reliability
between measurements with 82% of ICCs superior .8b.0In addition, this protocol
demonstrated either good or excellent inter-seasi@tiability when compared with a second
session with new cadaveric set-ups and operatas. mhkes it possible to validate its use in
multisession biomechanical studies.

The protocol described in this study will have matlipical applications. In vitro, it will
allow the in-depth study of healthy knee kinematios after injury of the ACL and
anterolateral complex (ALC). The individual funet® of structures composing the ALC
(ALL, anterolateral capsule, and iliotibial band an fibres) are still controversial and
unclear. Their individual contribution to the amtateral rotational laxity require an accurate
experimental assessment. It can also be applidtetpost-operative knee providing a greater
understanding of the role of the ALL reconstructinrproviding additional rotational control,
and how it may alter knee kinematics.

In vivo, this study provides a useful informatiam guide ALL reconstruction that may be
required in primary surgery for patients with a ¢oned ACL and ALC injury as well as
those requiring revision surgery after a firstddilACL reconstruction (Sonnery-Cottet et al.,
2017, 2015). Although this additional procedure Ish®wn clinical and biomechanical
benefits (Geeslin et al., 2018b; Sonnery-Cottedlet2015), there are still inconsistencies in
graft fixation. In order to ensure efficient andypiwlogical biomechanical behaviour, the
graft has to be fixed close to the range of flexwimere the ALL operates, i.e when it is
tensioned. To date, there is no clear consenstki®point. Regardless of measurement and
instrumentation factors, the literature suggestt the other main factor influencing the
length is the location of the ALL femoral origin @Waco et al., 2017). Helitet al.,
recommends that the graft is fixed with the knexdd between 60 and 90° (Helito et al.,
2015, 2013) with the ALL femoral footprint idengfl either anterior or on the lateral femoral
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epicondyle. Sonnery-Cottet al., recommend graft fixation close to extension aedtral
rotation to avoid overtightening in external robati (Sonnery-Cottet et al., 2015). They
located the ALL femoral origin posterior to the @mdyle. In another study, the same team
demonstrated that the ALL is tight when the kneati20° of flexion with internal rotation of
the tibia (Imbert et al., 2016). This is similarGhahlaet al. who recommend graft fixation at
30° of flexion (Chahla et al., 2016). We also fouhe ALL femoral origin to be in a posterior
and proximal position (Neri et al., 2017), and @dvt is at its longest with the knee at 25° of
flexion, suggesting that this is the most apprdpriposition to have the knee in when
tensioning a reconstruction.

Several limitations should be noted. Firstly, theali sample size and the variations between
the individual knees and specimens has contribtdettie large range in ALL length seen.
With 20 knees studied, our sample size is howewagegel than the majority of ALL
biomechanical studies with an average of 10 krdesondly, we did not use a rig to bend the
knee with the knee range of motion performed mdyudlonetheless, the intra-rater
reliability was good to excellent and the movemeas performed with a low speed. This
slow motion allowed to overcome the effects of speead therefore recalculation of the
angles and positions in a static model by intejpadathem at each degree of flexion without
using angular velocities.

CONCLUSION

This three-dimensional optoelectronic protocolabd us to analyse the variation of the ALL
length during knee motion with good reliability atite required accuracy to analyse this
variable. This makes it a valuable protocol thah ¢ used when carrying out future
biomechanical analyses necessary to optimise Alcbnstruction technigues. The maximal
length and highest tension of the ALL was repoeeé5° of knee flexion in internal rotation,
suggesting this as the optimal position for the ekrjeint when tensioning an ALL
reconstruction.
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FIGURES

Figure 1. Installation of Motion analysis® system with 8 Hidgfinition cameraslg),
around the specimen. Frodb) and lateral 1c) pictures of the set-up showing pelvis, femoral
and tibia reflective sensors.

Figure 2. Definition of bone landmarks and bone axis
- Femur: F1, F2, F3, F4, FHC* (Femoral Head Centeaderal Epicondyle (LE),
Medial Epicondyle (ME), KC* (Knee center)
- Tibia: T1, T2, T3, T4, center of Inter Condylar Erances (ICE)
- Ankle: Medial malleolar (MM), Lateral malleolar (L)JAnkle Center* (AC)
- Purple circle= palpated landmarks
- Purple star = calculated landmarks
- Femoral axis: XF (in red), YF (in green), ZF (iué)
- Tibial axis: XT (in red), YT (in green), ZT (in bdy

Figure 3. Dynamometric torque rig used to control the tilba@htion applied. The rig fixation
was ensured by 2 extra-articular bi malleolar &igbia and fibula) pins.3A: draw
explaining the pins positioning above the jointliof the ankle3B: photograph of the rig
used)

Figure 4. Example illustrating ALL length analysis during lenmotion regarding rotation
and flexion of the knee (ALL: anterolateral ligartjen

Figure 5. Example illustrating the reproducibility of measments over five acquisitions
from one knee in three conditions (IR, NR, ER).

(ALL: anterolateral ligament, IR: Internal rotatidéR: External rotation, NR: Neutral
rotation)

Figure 6. ALL length variation during knee flexion regarditigee conditions of rotation
(ALL: anterolateral ligament, IR: Internal rotatidéR: External rotation, NR: Neutral
rotation)
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