G. Lövestam, H. Rauscher, G. Roebben, B. S. Klüttgen, N. Gibson et al., Considerations on a definition of nanomaterial for regulatory purposes, JCR Ref. Rep. Luxemb, 2010.

H. Boulaiz, P. J. Alvarez, A. Ramirez, J. A. Marchal, J. Prados et al., Nanomedicine: Application Areas and Development Prospects, Int. J. Mol. Sci, vol.12, pp.3303-3321, 2011.

S. Priyadarsini, S. Mukherjee, and M. Mishra, Nanoparticles used in dentistry: A review, J. Oral Biol. Craniofacial Res, vol.8, pp.58-67, 2018.

L. Hassan, Dental Medicine Nanosystems: Nanoparticles and their use in Dentistry and Oral Health Care, Int. J. Dent. Oral Health, vol.3, pp.150-162, 2017.

R. Smith, Regulation (EC) No 764/2008 of the European Parliament and of the Council, In Core EU Legislation

, Global $36+ Billion Toothpaste Market, 2024: Growth, Trends and Forecast Analysis from 2019-ResearchAndMarkets.com. Available online, p.24, 2019.

M. E. Creusen and J. P. Schoormans, The Different Roles of Product Appearance in Consumer Choice *, J. Prod. Innov. Manag, vol.22, pp.63-81, 2005.

, Catalogue of nanomaterials in cosmetic products placed on the market-European Commission, p.25, 2019.

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol, vol.9, pp.1050-1074, 2018.

S. R. Corrie, K. J. Thurecht, and . Nano-bio, Guiding the Development of Nanoparticle Therapeutics, Diagnostics, and Imaging Agents, vol.33, pp.2311-2313, 2016.

M. O. Wassel and M. A. Khattab, Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes, J. Adv. Res, vol.8, pp.387-392, 2017.

E. M. Costa, S. Silva, A. R. Madureira, A. Cardelle-cobas, F. K. Tavaria et al., A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro, Carbohydr. Polym, vol.101, pp.1081-1086, 2014.

A. Cadinoiu, O. Darab?, . Merlus, P. C?, D. Anastasiu et al., Liposomal formulations with potential dental applications, Int. J. Med. Dent, vol.4, pp.271-277, 2014.

K. Sato, Mechanism of Hydroxyapatite Mineralization in Biological Systems (Review), J. Ceram. Soc. Jpn, vol.115, pp.124-130, 2007.

D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environ. Int, vol.77, pp.132-147, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01344057

M. A. Ashraf, W. Peng, Y. Zare, and K. Y. Rhee, Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites, Nanoscale Res. Lett, vol.13, 2018.

R. L. Ball, P. Bajaj, and K. A. Whitehead, Achieving long-term stability of lipid nanoparticles: Examining the effect of pH, temperature, and lyophilization, Int. J. Nanomed, vol.12, pp.305-315, 2017.

X. Ma, Y. Zare, and K. Y. Rhee, A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young's Modulus of Polymer Nanocomposites, Nanoscale Res. Lett, vol.12, 2017.

J. C. Kah, Stability and aggregation assays of nanoparticles in biological media, In Nanomaterial Interfaces in Biology, 2013.

D. Veilleux, M. Nelea, K. Biniecki, M. Lavertu, and M. D. Buschmann, Preparation of Concentrated Chitosan/DNA Nanoparticle Formulations by Lyophilization for Gene Delivery at Clinically Relevant Dosages, J. Pharm. Sci, vol.105, pp.88-96, 2016.

H. Liu, G. Zhang, L. Lu, Y. Chen, M. Luo et al., Influence of Varied Fluorine Contents on Long-Term Storage Stability of Polyacrylate Nanoparticles and Film Properties, 2019.

K. D. Ristroph, J. Feng, S. A. Mcmanus, Y. Zhang, K. Gong et al., Spray drying OZ439 nanoparticles to form stable, water-dispersible powders for oral malaria therapy, J. Transl. Med, vol.17, p.97, 2019.

W. Ngamcherdtrakul, T. Sangvanich, M. Reda, S. Gu, D. Bejan et al., Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery, Int. J. Nanomed, vol.13, pp.4015-4027, 2018.

M. D. Howard, X. Lu, M. Jay, and T. D. Dziubla, Optimization of the lyophilization process for long-term stability of solid-lipid nanoparticles, Drug Dev. Ind. Pharm, vol.38, pp.1270-1279, 2012.

P. Fonte, S. Reis, and B. Sarmento, Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery, J. Control. Release, vol.225, pp.75-86, 2016.

W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Freeze-drying of nanoparticles: Formulation, process and storage considerations, Adv. Drug Deliv. Rev, vol.58, pp.1688-1713, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02020761

I. Abiodun-solanke, D. Ajayi, and A. Arigbede, Nanotechnology and its Application in Dentistry, Ann. Med. Health Sci. Res, vol.4, pp.171-177, 2014.

S. Khan, A. Al-khedhairy, and J. Musarrat, ZnO and TiO 2 nanoparticles as novel antimicrobial agents for oral hygiene: A review, J. Nanoparticle Res, vol.17, 2015.

A. J. Huh and Y. J. Kwon, Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, vol.156, pp.128-145, 2011.

H. , S. H. El-zowalaty, M. E. Hussein, M. Z. Geilich, B. M. Webster et al., Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications, Int. J. Nanomed, vol.9, pp.3801-3814, 2014.

F. Ahmed, S. T. Prashanth, K. Sindhu, A. Nayak, and S. Chaturvedi, Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study, J. Indian Soc. Pedod. Prev. Dent, vol.37, pp.46-54, 2019.

A. A. Alsubaie, Z. Sarfraz, A. A. Alali, A. E. Alessa, H. A. Subaie et al., Effect of nano-zinc oxide and fluoride-doped bioactive glass-based dentifrices on esthetic restorations, Dent. Med. Probl, vol.56, pp.59-65, 2019.

M. Vano, G. Derchi, A. Barone, A. Genovesi, and U. Covani, Tooth bleaching with hydrogen peroxide and nano-hydroxyapatite: A 9-month follow-up randomized clinical trial, Int. J. Dent. Hyg, vol.13, pp.301-307, 2015.

C. C. Coelho, L. Grenho, P. S. Gomes, P. A. Quadros, and M. H. Fernandes, Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment, Sci. Rep, vol.9, pp.1-10, 2019.

J. E. Frencken, P. Sharma, L. Stenhouse, D. Green, D. Laverty et al., Global epidemiology of dental caries and severe periodontitis-A comprehensive review, J. Clin. Periodontol, vol.44, pp.94-105, 2017.

A. M. Valm, The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease, J. Mol. Biol, vol.431, pp.2957-2969, 2019.

M. Sanz, D. Beighton, M. A. Curtis, J. A. Cury, I. Dige et al., Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases, Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease, vol.44, pp.5-11, 2017.

L. Wang, C. Hu, and L. Shao, The antimicrobial activity of nanoparticles: Present situation and prospects for the future, Int. J. Nanomed, vol.12, pp.1227-1249, 2017.

T. Mah, Biofilm-specific antibiotic resistance, Future Microbiol, vol.7, pp.1061-1072, 2012.

L. Reyes, D. Herrera, E. Kozarov, and S. Roldán, Progulske-Fox, A. Periodontal bacterial invasion and infection: Contribution to atherosclerotic pathology, J. Clin. Periodontol, vol.40, 2013.

J. T. Seil and T. J. Webster, Antimicrobial applications of nanotechnology: Methods and literature, Int. J. Nanomed, vol.7, pp.2767-2781, 2012.

C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha et al., Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens, Bioinorg. Chem. Appl, 2014.

I. Armentano, C. R. Arciola, E. Fortunati, D. Ferrari, S. Mattioli et al., The interaction of bacteria with engineered nanostructured polymeric materials: A review, Sci. World J, 2014.

H. Li, Q. Chen, J. Zhao, and K. Urmila, Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles, Sci. Rep, vol.5, p.11033, 2015.

B. Luan, T. Huynh, and R. Zhou, Complete wetting of graphene by biological lipids, Nanoscale, vol.8, pp.5750-5754, 2016.

W. Gao, S. Thamphiwatana, P. Angsantikul, and L. Zhang, Nanoparticle approaches against bacterial infections, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.6, pp.532-547, 2014.

W. Yang, C. Shen, Q. Ji, H. An, J. Wang et al., Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA, Nanotechnology, vol.20, p.85102, 2009.

Y. Xu, M. Wei, H. D. Ou-yang, S. G. Walker, H. Z. Wang et al., Exposure to TiO 2 nanoparticles increases Staphylococcus aureus infection of HeLa cells, J. Nanobiotechnol, vol.14, 2016.

O. V. Zakharova, A. Y. Godymchuk, A. A. Gusev, S. I. Gulchenko, I. A. Vasyukova et al., Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes, p.412530, 2015.

S. Gurunathan, J. W. Han, A. A. Dayem, V. Eppakayala, and J. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa, Int. J. Nanomed, vol.7, pp.5901-5914, 2012.

Y. H. Leung, A. M. Ng, X. Xu, Z. Shen, L. A. Gethings et al., Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli, Small Weinh. Bergstr. Ger, vol.10, pp.1171-1183, 2014.

W. Dröge, Free radicals in the physiological control of cell function, Physiol. Rev, vol.82, pp.47-95, 2002.

S. Shaikh, N. Nazam, S. M. Rizvi, K. Ahmad, M. H. Baig et al., Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance, Int. J. Mol. Sci, 2019.

C. Nathan and A. Cunningham-bussel, Beyond oxidative stress: An immunologist's guide to reactive oxygen species, Nat. Rev. Immunol, vol.13, pp.349-361, 2013.

K. Gold, B. Slay, M. Knackstedt, and A. K. Gaharwar, Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles, Adv. Ther, 2018.

G. Cheloni, E. Marti, and V. I. Slaveykova, Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii, Aquat. Toxicol. Amst. Neth, vol.170, pp.120-128, 2016.

M. A. Ansari, H. M. Khan, M. A. Alzohairy, M. Jalal, S. G. Ali et al., Green synthesis of Al 2 O 3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa, World J. Microbiol. Biotechnol, vol.31, pp.153-164, 2015.

J. J. Castellano, S. M. Shafii, F. Ko, G. Donate, T. E. Wright et al., Comparative evaluation of silver-containing antimicrobial dressings and drugs, Int. Wound J, vol.4, pp.114-122, 2007.

M. Polívková, V. ?trublová, T. Hubá?ek, S. Rimpelová, V. ?vor?ík et al., Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate, Mater. Sci. Eng. C Mater. Biol. Appl, vol.72, pp.512-518, 2017.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, vol.4, pp.380-386, 2010.

J. Yu, W. Zhang, Y. Li, G. Wang, L. Yang et al., Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial, Biomed. Mater. Bristol Engl, vol.10, 2014.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

H. Agarwal, A. Nakara, and V. K. Shanmugam, Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review, Biomed. Pharmacother. Biomed. Pharmacother, vol.109, pp.2561-2572, 2019.

M. Simko, U. Fiedeler, A. Gazsó, and M. Nentwich, The impact of nanoparticles on cellular functions, 2011.

D. A. Kuhn, D. Vanhecke, B. Michen, F. Blank, P. Gehr et al., Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages, Beilstein J. Nanotechnol, vol.5, pp.1625-1636, 2014.

M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli et al., Protein-nanoparticle interactions: Opportunities and challenges, Chem. Rev, vol.111, pp.5610-5637, 2011.

L. E. Muñoz, R. Bilyy, M. H. Biermann, D. Kienhöfer, C. Maueröder et al., Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation, Proc. Natl. Acad. Sci, vol.113, pp.5856-5865, 2016.

S. H. Lee and B. Jun, Silver Nanoparticles: Synthesis and Application for Nanomedicine, Int. J. Mol. Sci, vol.20, 2019.

H. D. Beyene, A. A. Werkneh, H. K. Bezabh, and T. G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review, Sustain. Mater. Technol, vol.13, pp.18-23, 2017.

M. S. Majoumouo, N. R. Sibuyi, M. B. Tincho, M. Mbekou, F. F. Boyom et al., Enhanced Anti-Bacterial Activity Of Biogenic Silver Nanoparticles Synthesized From Terminalia mantaly Extracts, Int. J. Nanomed, vol.14, pp.9031-9046, 2019.

V. Bansal, R. Ramanathan, and S. K. Bhargava, Fungus-mediated Biological Approaches Towards 'Green' Synthesis of Oxide Nanomaterials *, Aust. J. Chem, vol.64, pp.279-293, 2011.

G. Gahlawat and A. R. Choudhury, A review on the biosynthesis of metal and metal salt nanoparticles by microbes, vol.9, pp.12944-12967, 2019.

J. Ali, N. Ali, L. Wang, H. Waseem, and G. Pan, Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles, J. Microbiol. Methods, vol.159, pp.18-25, 2019.

M. Guilger-casagrande and R. De-lima, Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol, vol.7, 2019.

M. Khan, M. R. Shaik, S. F. Adil, S. T. Khan, A. Al-warthan et al., Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis, Dalton Trans, vol.47, pp.11988-12010, 2018.

S. Valsalam, P. Agastian, G. A. Esmail, A. M. Ghilan, N. A. Al-dhabi et al., Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy, J. Photochem. Photobiol. B, 2019.

G. Das, J. K. Patra, N. Basavegowda, C. N. Vishnuprasad, and H. Shin, Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam, Int. J. Nanomed, vol.14, pp.4741-4754, 2019.

A. Arya, V. Mishra, and T. S. Chundawat, Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles, Chem. Data Collect, 2019.

M. Ahamed, M. S. Alsalhi, and M. K. Siddiqui, Silver nanoparticle applications and human health, Clin. Chim. Acta Int. J. Clin. Chem, vol.411, pp.1841-1848, 2010.

J. B. Wright, K. Lam, D. Hansen, and R. E. Burrell, Efficacy of topical silver against fungal burn wound pathogens, Am. J. Infect. Control, vol.27, pp.344-350, 1999.

S. W. Wijnhoven, W. J. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen et al., Nano-silver-A review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology, vol.3, pp.109-138, 2009.

S. Gurunathan, J. W. Han, D. Kwon, and J. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Res. Lett, vol.9, 2014.

S. Niakan, M. Niakan, S. Hesaraki, M. R. Nejadmoghaddam, M. Moradi et al., Comparison of the Antibacterial Effects of Nanosilver With 18 Antibiotics on Multidrug Resistance Clinical Isolates of Acinetobacter baumannii, Jundishapur J. Microbiol, issue.6, 2013.

W. Li, X. Xie, Q. Shi, H. Zeng, Y. Ou-yang et al., Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol, vol.85, pp.1115-1122, 2010.

M. Niakan, H. R. Azimi, Z. Jafarian, G. Mohammadtaghi, S. Niakan et al., Evaluation of Nanosilver Solution Stability against Streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa, Jundishapur J. Microbiol, issue.6, 2013.

P. Sotoodehnia, N. Mazlan, H. Mohd-saud, W. A. Samsuri, S. H. Habib et al., Minimum inhibitory concentration of nano-silver bactericides for beneficial microbes and its effect on Ralstonia solanacearum and seed germination of Japanese Cucumber (Cucumis sativus), PeerJ, vol.7, 2019.

J. Pulit-prociak and M. Banach, Silver nanoparticles-A material of the future, Open Chem. 2016, vol.14, pp.76-91

M. Lotfi, S. Vosoughhosseini, B. Ranjkesh, S. Khani, M. Saghiri et al., Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis, Afr. J. Biotechnol, vol.10, pp.6799-6803, 2011.

M. Zarei, A. Jamnejad, and E. Khajehali, Antibacterial effect of silver nanoparticles against four foodborne pathogens, Jundishapur J. Microbiol, vol.7, 2014.

M. Banach, L. Tymczyna, A. Chmielowiec-korzeniowska, and J. Pulit-prociak, Nanosilver Biocidal Properties and Their Application in Disinfection of Hatchers in Poultry Processing Plants, Bioinorg. Chem. Appl, 2016.

L. Cheng, K. Zhang, M. D. Weir, H. Liu, X. Zhou et al., Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks, Dent. Mater, vol.29, pp.462-472, 2013.

A. Panacek, L. Kvítek, R. Prucek, M. Kolar, R. Vecerova et al., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, vol.110, pp.16248-16253, 2006.

J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri et al., The bactericidal effect of silver nanoparticles, Nanotechnology, vol.16, pp.2346-2353, 2005.

M. Qasim, N. Udomluck, J. Chang, H. Park, and K. Kim, Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles, Int. J. Nanomed, vol.13, pp.235-249, 2018.

J. Li, K. Rong, H. Zhao, F. Li, Z. Lu et al., Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis, J. Nanosci. Nanotechnol, vol.13, pp.6806-6813, 2013.

F. A. Qais, A. Shafiq, H. M. Khan, F. M. Husain, R. A. Khan et al., Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens, Bioinorg. Chem. Appl, vol.4649506, 2019.

C. Lok, C. Ho, R. Chen, Q. He, W. Yu et al., Silver nanoparticles: Partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem, vol.12, pp.527-534, 2007.

G. A. Sotiriou and S. E. Pratsinis, Antibacterial activity of nanosilver ions and particles, Environ. Sci. Technol, vol.44, pp.5649-5654, 2010.

M. R. Nateghi and H. Hajimirzababa, Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics, J. Text. Inst, vol.105, pp.806-813, 2014.

N. Lkhagvajav, M. Koizhaiganova, I. Yasa, E. Çelik, and Ö. Sari, Characterization and antimicrobial performance of nano silver coatings on leather materials, Braz. J. Microbiol, vol.46, pp.41-48, 2015.

N. V. Ayala-núñez, H. H. Lara-villegas, L. Del-carmen-ixtepan-turrent, and C. Rodríguez-padilla, Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter, NanoBiotechnology, vol.5, pp.2-9, 2009.

A. Masri, A. Anwar, N. A. Khan, M. S. Shahbaz, K. M. Khan et al., Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles, Antibiotics, vol.8, p.179, 2019.

J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-bragado, X. Gao et al., Interaction of silver nanoparticles with HIV-1, J. Nanobiotechnol, vol.3, issue.6, 2005.

S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga et al., Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3, Int. J. Nanomed, vol.8, pp.4303-4314, 2013.

Y. Mori, T. Ono, Y. Miyahira, V. Q. Nguyen, T. Matsui et al., Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus, Nanoscale Res. Lett, vol.8, 2013.

S. Prabhu and E. K. Poulose, Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett, vol.2, p.32, 2012.

A. Simón-soro and A. Mira, Solving the etiology of dental caries, Trends Microbiol, vol.23, pp.76-82, 2015.

J. Junevi?ius, J. ?ilinskas, K. ?esaitis, G. ?esaitien?, D. Gleiznys et al., Antimicrobial activity of silver and gold in toothpastes: A comparative analysis, Stomatologija, vol.17, pp.9-12, 2015.

S. Balagopal, R. Arjunkumar, and . Chlorhexidine, The Gold Standard Antiplaque Agent, J. Pharm. Sci, issue.5, p.270, 2013.

C. H. Charles, K. M. Mostler, L. L. Bartels, and S. M. Mankodi, Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial, J. Clin. Periodontol, vol.31, pp.878-884, 2004.

V. Esfahanian, F. Mohamadi, and S. Amini, An In Vitro Comparison of Antimicrobial Effect of Nanosil and ChlorhexidineMouthrinses, J. Islam. Dent. Assoc. Iran, vol.24, pp.187-191, 2012.

K. H. Abu-elteen and R. M. Abu-alteen, The prevalence of Candida albicans populations in the mouths of complete denture wearers, New Microbiol, vol.21, pp.41-48, 1998.

M. Belazi, A. Velegraki, T. Koussidou-eremondi, D. Andreadis, S. Hini et al., Oral Candida isolates in patients undergoing radiotherapy for head and neck cancer: Prevalence, azole susceptibility profiles and response to antifungal treatment, Oral Microbiol. Immunol, vol.19, pp.347-351, 2004.

M. F. Abadi, S. Mehrabian, B. Asghari, A. E. Namvar, F. Ezzatifar et al., Silver nanoparticles as active ingredient used for alcohol-free mouthwash, GMS Hyg. Infect. Control, issue.8, p.5, 2013.

C. Do-nascimento, D. F. Paulo, M. S. Pita, V. Pedrazzi, and R. F. De-albuquerque-junior, Microbial diversity of the supra-and subgingival biofilm of healthy individuals after brushing with chlorhexidine-or silver-coated toothbrush bristles, Can. J. Microbiol, vol.61, pp.112-123, 2015.

A. Mackevica, M. E. Olsson, and S. F. Hansen, The release of silver nanoparticles from commercial toothbrushes, J. Hazard. Mater, vol.322, pp.270-275, 2017.

S. Gaillet and J. Rouanet, Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms-A review, Food Chem. Toxicol, vol.77, pp.58-63, 2015.

Y. M. Patil, S. N. Rajpathak, and D. D. Deobagkar, Characterization and DNA methylation modulatory activity of gold nanoparticles synthesized by Pseudoalteromonas strain, J. Biosci, vol.44, 2019.

R. Liu, Q. Pei, T. Shou, W. Zhang, J. Hu et al., Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells, Int. J. Nanomed, vol.14, pp.4091-4103, 2019.

M. Chen, C. Chan, S. Huang, and Y. Lin, Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties, J. Sci. Food Agric, vol.99, pp.3693-3702, 2019.

Q. Huang, A. Luo, L. Jiang, Y. Zhou, Y. Yang et al., Disinfection efficacy of green synthesized gold nanoparticles for medical disinfection applications, Afr. Health Sci, vol.19, pp.1441-1448, 2019.

A. Verma, S. P. Gautam, K. K. Bansal, N. Prabhakar, J. M. Rosenholm et al., Nanotechnology: Advancement in Phytoformulation Research. Medicines, vol.6, p.39, 2019.

A. Folorunso, S. Akintelu, A. K. Oyebamiji, S. Ajayi, B. Abiola et al., Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata, J. Nanostruct. Chem, vol.9, pp.111-117, 2019.

W. J. Keijok, R. H. Pereira, L. A. Alvarez, A. R. Prado, A. R. Da-silva et al., Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design, Sci. Rep, vol.9, pp.1-10, 2019.

C. Raval, K. Vyas, U. Gandhi, B. Patel, and P. Patel, Nanotechnology in dentistry: A review, J. Adv. Med. Dent. Sci. Res, vol.4, p.3, 2016.

H. Katas, C. S. Lim, A. Y. Nor-azlan, F. Buang, and M. F. Mh-busra, Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan, Saudi Pharm. J, vol.27, pp.283-292, 2019.

S. Yougbare, T. Chang, S. Tan, J. Kuo, P. Hsu et al., Antimicrobial Gold Nanoclusters: Recent Developments and Future Perspectives, Int. J. Mol. Sci, 2019.

M. Makowski, Í. C. Silva, C. Pais-do-amaral, S. Gonçalves, and N. C. Santos, Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery, Pharmaceutics, vol.11, 2019.

N. Naimi-shamel, P. Pourali, and S. Dolatabadi, Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant, J. Mycol. Med, vol.29, pp.7-13, 2019.

Y. Fan, A. C. Pauer, A. A. Gonzales, and H. Fenniri, Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes, Int. J. Nanomed, vol.14, pp.7281-7289, 2019.

S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir et al., Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen, Nanomaterials, vol.6, p.71, 2016.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small Weinh. Bergstr. Ger, vol.1, pp.325-327, 2005.

A. M. Elsome, J. M. Hamilton-miller, W. Brumfitt, and W. C. Noble, Antimicrobial activities in vitro and in vivo of transition element complexes containing gold(I) and osmium (VI), J. Antimicrob. Chemother, vol.37, pp.911-918, 1996.

F. Novelli, M. Recine, F. Sparatore, and C. Juliano, Gold(I) complexes as antimicrobial agents, Farm. Soc. Chim. Ital, vol.54, pp.232-236, 1999.

J. F. Hernández-sierra, F. Ruiz, D. C. Pena, F. Martínez-gutiérrez, A. E. Martínez et al., The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomed. Nanotechnol. Biol. Med, vol.4, pp.237-240, 2008.

E. Burdus, A. Gherasim, O. Grumezescu, A. M. Mogoant?, L. Ficai et al., Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview, Nanomaterials, vol.8, p.681, 2018.

R. N. Alkahtani, The implications and applications of nanotechnology in dentistry: A review, Saudi Dent. J, vol.30, pp.107-116, 2018.

G. Jia, A. Zhi, P. F. Lai, G. Wang, Y. Xia et al., The oral microbiota-A mechanistic role for systemic diseases, Br. Dent. J, vol.224, pp.447-455, 2018.

N. Gunduz, H. Ceylan, M. O. Guler, and A. B. Tekinay, Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress, Sci. Rep, vol.7, pp.1-10, 2017.

J. H. Sung, J. H. Ji, J. D. Park, M. Y. Song, K. S. Song et al., Subchronic inhalation toxicity of gold nanoparticles, Part. Fibre Toxicol, vol.8, 2011.

S. S. Rad, A. M. Sani, and S. Mohseni, Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.), Microb. Pathog, vol.131, pp.239-245, 2019.

A. Ahmadi-shadmehri, F. Namvar, H. Miri, P. Yaghmaei, and M. Nakhaei-moghaddam, Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles, Int. J. Nano Dimens, vol.10, pp.350-358, 2019.

H. Chemingui, T. Missaoui, J. C. Mzali, T. Yildiz, M. Konyar et al., Facile green synthesis of zinc oxide nanoparticles (ZnO NPs): Antibacterial and photocatalytic activities, Mater. Res. Express, vol.6, 2019.

S. Hajiashrafi and N. Motakef-kazemi, Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon, vol.5, 2019.

N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett, vol.279, pp.71-76, 2008.

M. Fang, J. Chen, X. Xu, P. Yang, and H. F. Hildebrand, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents, vol.27, pp.513-517, 2006.

H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-salim et al., Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine, J. Biomed. Sci, vol.26, 2019.

M. A. Aldosari, S. S. Darwish, M. A. Adam, N. A. Elmarzugi, and S. M. Ahmed, Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites, Archaeol. Anthropol. Sci, vol.11, pp.3407-3422, 2019.

S. Jin and H. Jin, Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications, Pharmaceutics, vol.11, 2019.

G. T. Mazitova, K. I. Kienskaya, D. A. Ivanova, I. A. Belova, I. A. Butorova et al., Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects, Rev. J. Chem, vol.9, pp.127-152, 2019.

S. Kasraei, L. Sami, S. Hendi, M. Alikhani, L. Rezaei-soufi et al., Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus, Restor. Dent. Endod, vol.39, pp.109-114, 2014.

A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. Kaus, L. C. Ann et al., Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett, vol.7, pp.219-242, 2015.

R. Brayner, R. Ferrari-iliou, N. Brivois, S. Djediat, M. F. Benedetti et al., Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett, vol.6, pp.866-870, 2006.

P. Pranjali, M. K. Meher, R. Raj, N. Prasad, K. M. Poluri et al., Physicochemical and Antibacterial Properties of PEGylated Zinc Oxide Nanoparticles Dispersed in Peritoneal Dialysis Fluid, ACS Omega, vol.4, pp.19255-19264, 2019.

K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa et al., Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions, Ceram. Int, vol.36, pp.497-506, 2010.

K. Memarzadeh, M. Vargas, J. Huang, J. Fan, and R. Allaker, Nano Metallic-Oxides as Antimicrobials for Implant Coatings, Key Eng. Mater, vol.493, pp.489-494, 2011.

M. A. Vargas-reus, K. Memarzadeh, J. Huang, G. G. Ren, and R. P. Allaker, Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens, Int. J. Antimicrob. Agents, vol.40, pp.135-139, 2012.

R. Osorio, M. Yamauti, E. Osorio, M. Ruiz-requena, D. Pashley et al., Zinc reduces collagen degradation in demineralized human dentin explants, J. Dent, pp.39-148, 2011.

P. C. Nagajyothi, S. J. Cha, I. J. Yang, T. V. Sreekanth, K. J. Kim et al., Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract, J. Photochem. Photobiol. B, vol.146, pp.10-17, 2015.

A. Mahmood, M. Mneimne, L. F. Zou, R. G. Hill, and D. G. Gillam, Abrasive wear of enamel by bioactive glass-based toothpastes, Am. J. Dent, vol.27, pp.263-267, 2014.

T. Takatsuka, K. Tanaka, and Y. Iijima, Inhibition of dentine demineralization by zinc oxide: In vitro and in situ studies, Dent. Mater, vol.21, pp.1170-1177, 2005.

E. Lynch, D. S. Brauer, N. Karpukhina, D. G. Gillam, and R. G. Hill, Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity, Dent. Mater, vol.28, pp.168-178, 2012.

M. Burguera-pascu, A. Rodríguez-archilla, and P. Baca, Substantivity of zinc salts used as rinsing solutions and their effect on the inhibition of Streptococcus mutans, J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. GMS, vol.21, pp.92-101, 2007.

M. M. Almoudi, A. S. Hussein, M. I. Hassan, and N. Mohamad-zain, A systematic review on antibacterial activity of zinc against Streptococcus mutans, Saudi Dent. J, vol.30, pp.283-291, 2018.

F. Ahrari, N. Eslami, O. Rajabi, K. Ghazvini, and S. Barati, The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes, Dent. Res. J, vol.12, pp.44-49, 2015.

S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi et al., ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv, vol.2, pp.930-940, 2012.

M. Y. Kachoei, B. Divband, F. D. Tabriz, Z. N. Helali, and M. Esmailzadeh, A comparative study of antibacterial effects of mouthwashes containing Ag/ZnO or ZnO nanoparticles with chlorhexidine and investigation of their cytotoxicity, Nanomed. J, vol.5, pp.102-110, 2018.

N. Eslami, F. Ahrari, O. Rajabi, and R. Zamani, The staining effect of different mouthwashes containing nanoparticles on dental enamel, J. Clin. Exp. Dent, vol.7, pp.457-461, 2015.

W. Liu, P. Su, S. Chen, N. Wang, Y. Ma et al., Synthesis of TiO 2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility, Nanoscale, vol.6, pp.9050-9062, 2014.

V. Kulkarni, V. Palled, S. Hiregoudar, K. Prakash, D. Maski et al., Bio-Synthesis and Characterization of Titanium Dioxide Nanoparticles (TiO 2 ) Using Azadirachta indica Leaf (Neem Leaf) Extract, Int. J. Curr. Microbiol. Appl. Sci, vol.8, pp.2309-2317, 2019.

Z. Madadi, M. Soltanieh, T. Bagheri-lotfabad, and S. N. Nazari, Green synthesis of titanium dioxide nanoparticles with Glycyrrhiza glabra and their photocatalytic activity, Asian J. Green Chem, 2019.

H. Kaur, S. Kaur, J. Singh, M. Rawat, and S. Kumar, Expanding horizon: Green synthesis of TiO 2 nanoparticles using Carica papaya leaves for photocatalysis application, Mater. Res. Express, vol.6, p.95034, 2019.

N. Swathi, D. Sandhiya, S. Rajeshkumar, and T. Lakshmi, Green synthesis of titanium dioxide nanoparticles using Cassia fistula and its antibacterial activity, Int. J. Res. Pharm. Sci, vol.10, pp.856-860, 2019.

C. L. De-dicastillo, C. Patiño, M. J. Galotto, Y. Vásquez-martínez, C. Torrent et al., Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria, Beilstein J. Nanotechnol, vol.10, pp.1716-1725, 2019.

M. Azizi-lalabadi, A. Ehsani, B. Divband, and M. Alizadeh-sani, Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic, Sci. Rep, vol.9, pp.1-10, 2019.

S. Akhtar, K. Shahzad, S. Mushtaq, I. Ali, M. H. Rafe et al., Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO 2 ) nanoparticles suitable for biological applications, Mater. Res. Express, vol.6, 2019.

Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu et al., Effect of defects on photocatalytic activity of rutile TiO 2 nanorods, Nano Res, vol.8, pp.4061-4071, 2015.

X. Feng, F. Pan, H. Zhao, W. Deng, P. Zhang et al., Atomic layer deposition enabled MgO surface coating on porous TiO 2 for improved CO 2 photoreduction, Appl. Catal. B Environ, vol.238, pp.274-283, 2018.

N. Esfandiari, A. Simchi, and R. Bagheri, Size tuning of Ag-decorated TiO 2 nanotube arrays for improved bactericidal capacity of orthopedic implants, J. Biomed. Mater. Res. A, vol.102, pp.2625-2635, 2014.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O'connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev, vol.104, pp.3893-3946, 2004.

H. Hassan, K. I. Omoniyi, F. G. Okibe, A. A. Nuhu, and E. G. Echioba, Evaluation of Antibacterial Potential of Biosynthesized Plant Leave Extract Mediated Titanium Oxide Nanoparticles using Hypheae Thiebeace and Anannos Seneglensis, J. Appl. Sci. Environ. Manag, vol.23, pp.1795-1804, 2019.

S. Mohammadi, P. Mohammadi, S. Hosseinkhani, and R. Shipour, Antifungal Activity of TiO2 nanoparticles and EDTA on Candida albicans, Biofilms. Infect. Epidemiol. Med, vol.1, pp.33-38, 2013.

P. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum et al., Bactericidal Activity of Photocatalytic TiO 2 Reaction: Toward an Understanding of Its Killing Mechanism, Appl. Environ. Microbiol, vol.65, pp.4094-4098, 1999.

Y. Tsuang, J. Sun, Y. Huang, C. Lu, W. H. Chang et al., Studies of photokilling of bacteria using titanium dioxide nanoparticles, Artif. Organs, vol.32, pp.167-174, 2008.

I. Wysocka, E. Kowalska, J. Ryl, G. Nowaczyk, A. Zieli?ska-jurek et al., Photocatalytic and Antimicrobial Properties of TiO 2 Modified with Mono-and Bimetallic Copper, Platinum and Silver Nanoparticles, Nanomaterials, vol.9, 1129.

C. Chambers, S. B. Stewart, B. Su, H. F. Jenkinson, J. R. Sandy et al., Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers, Dent. Mater, vol.33, pp.115-123, 2017.

G. Durango-giraldo, A. Cardona, J. F. Zapata, J. F. Santa, and R. Buitrago-sierra, Titanium dioxide modified with silver by two methods for bactericidal applications, vol.5, 1608.

O. Komatsu, H. Nishida, T. Sekino, and K. Yamamoto, Application of Titanium Dioxide Nanotubes to Tooth Whitening, Nano Biomed, vol.6, pp.63-72, 2014.

I. Iavicoli, V. Leso, L. Fontana, and A. Bergamaschi, Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies, Eur. Rev. Med. Pharmacol. Sci, vol.15, pp.481-508, 2011.

I. Iavicoli, V. Leso, and A. Bergamaschi, Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of In Vivo Studies, p.24, 2019.

H. Shi, R. Magaye, V. Castranova, and J. Zhao, Titanium dioxide nanoparticles: A review of current toxicological data, Part. Fibre Toxicol, vol.10, 2013.

L. Geraets, A. G. Oomen, P. Krystek, N. R. Jacobsen, H. Wallin et al., Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats, Part. Fibre Toxicol, vol.11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01143801

C. Rompelberg, M. B. Heringa, G. Van-donkersgoed, J. Drijvers, A. Roos et al., Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population, Nanotoxicology, vol.10, pp.1404-1414, 2016.

E. Baranowska-wójcik, D. Szwajgier, P. Oleszczuk, and A. Winiarska-mieczan, Effects of Titanium Dioxide Nanoparticles Exposure on Human Health-A Review, Biol. Trace Elem. Res, vol.193, pp.118-129, 2019.

F. Buazar, S. Sweidi, M. Badri, and F. Kroushawi, Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach, vol.8, pp.691-702, 2019.

M. Khatami, R. S. Varma, M. Heydari, M. Peydayesh, A. Sedighi et al., Copper Oxide Nanoparticles Greener Synthesis Using Tea and its Antifungal Efficiency on Fusarium solani, Geomicrobiol. J, vol.36, pp.777-781, 2019.

S. Tavakoli, M. Kharaziha, and S. Ahmadi, Green synthesis and morphology dependent antibacterial activity of copper oxide nanoparticles, J. Nanostruct, vol.9, pp.163-171, 2019.

M. Hamouda and I. , Current perspectives of nanoparticles in medical and dental biomaterials, J. Biomed. Res, vol.26, pp.143-151, 2012.

G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-reus, P. Reip et al., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, vol.33, pp.587-590, 2009.

M. Amiri, Z. Etemadifar, A. Daneshkazemi, and M. Nateghi, Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species, J. Dent. Biomater, vol.4, pp.347-352, 2017.

E. Varoni, M. Tarce, G. Lodi, and A. Carrassi, Chlorhexidine (CHX) in dentistry: State of the art, vol.61, pp.399-419, 2012.

M. E. Barbour, S. E. Maddocks, N. J. Wood, and A. M. Collins, Synthesis, characterization, and efficacy of antimicrobial chlorhexidine hexametaphosphate nanoparticles for applications in biomedical materials and consumer products, Int. J. Nanomed, vol.8, pp.3507-3519, 2013.

B. Zhu, L. C. Macleod, T. Kitten, and P. Xu, Streptococcus sanguinis biofilm formation & interaction with oral pathogens, Future Microbiol, vol.13, pp.915-932, 2018.

C. J. Seneviratne, K. C. Leung, .. Wong, C. Lee, S. Li et al., Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms, PLoS ONE, vol.9, 2014.

Y. Liu, P. C. Naha, G. Hwang, D. Kim, Y. Huang et al., Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity, Nat. Commun, vol.9, pp.1-12, 2018.

S. Ikemoto, K. Sugimura, N. Yoshida, R. Yasumoto, S. Wada et al., Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines, Urology, vol.55, pp.951-955, 2000.

H. A. Eid-abdelmagyd, D. S. Shetty, and D. M. Musa-musleh-al-ahmari, Herbal medicine as adjunct in periodontal therapies-A review of clinical trials in past decade, J. Oral Biol. Craniofacial Res, vol.9, pp.212-217, 2019.

W. Luo, C. Wang, and L. Jin, Baicalin downregulates Porphyromonas gingivalis lipopolysaccharideupregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling, PLoS ONE, vol.7, 2012.

W. S. Sheng, P. R. Hsueh, C. C. Hung, L. J. Teng, Y. C. Chen et al., Clinical features of patients with invasive Eikenella corrodens infections and microbiological characteristics of the causative isolates, Eur. J. Clin. Microbiol. Infect. Dis, vol.20, pp.231-236, 2001.

L. Qing, J. Xiong, Y. Xue, Y. Liu, B. Guang et al., Using baicalin-functionalized magnetic nanoparticles for selectively extracting flavonoids from Rosa chinensis, J. Sep. Sci, vol.34, pp.3240-3245, 2011.

L. Wang, H. Zhang, B. Chen, G. Xia, S. Wang et al., Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells, Int. J. Nanomed, vol.7, pp.789-798, 2012.

N. Babu, V. Kannan, and S. , Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis, Int. J. Biol. Macromol, vol.51, pp.1103-1108, 2012.

K. C. Leung, .. Seneviratne, C. J. Li, X. Leung, P. C. Lau et al., Synergistic Antibacterial Effects of Nanoparticles Encapsulated with Scutellaria baicalensis and Pure Chlorhexidine on Oral Bacterial Biofilms, vol.6, p.61, 2016.

W. Paul and C. P. Sharma, Chitosan, a drug carrier for the 21st century: A review, T P Pharma Sci, vol.10, pp.5-22, 2000.

M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci, vol.36, pp.981-1014, 2011.

T. H. Costa, J. A. De-figueiredo-neto, A. E. De-oliveira, M. D. Maia, and A. L. De-almeida, Association between chronic apical periodontitis and coronary artery disease, J. Endod, vol.40, pp.164-167, 2014.

E. M. Costa, S. Silva, M. R. Costa, M. Pereira, D. A. Campos et al., Chitosan mouthwash: Toxicity and in vivo validation, Carbohydr. Polym, vol.111, pp.385-392, 2014.

C. Sámano-valencia, G. A. Martínez-castañón, R. E. Martínez-martínez, J. P. Loyola-rodríguez, J. F. Reyes-macías et al., Bactericide efficiency of a combination of chitosan gel with silver nanoparticles, Mater. Lett, vol.106, pp.413-416, 2013.

N. C. Mohire and A. V. Yadav, Chitosan-based polyherbal toothpaste: As novel oral hygiene product, Indian J. Dent. Res, vol.21, pp.380-384, 2010.

N. Schlueter, J. Klimek, and C. Ganss, Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss, Caries Res, vol.47, pp.574-581, 2013.

N. Schlueter, J. Klimek, and C. Ganss, Effect of a chitosan additive to a Sn2+-containing toothpaste on its anti-erosive/anti-abrasive efficacy-A controlled randomised in situ trial, Clin. Oral Investig, vol.18, pp.107-115, 2014.

T. Uysal, M. D. Akkurt, M. Amasyali, S. Ozcan, A. Yagci et al., Does a chitosan-containing dentifrice prevent demineralization around orthodontic brackets? Angle Orthod, vol.81, pp.319-325, 2011.

J. D. Featherstone, The science and practice of caries prevention, J. Am. Dent. Assoc, vol.131, pp.887-899, 2000.

J. D. Featherstone, The continuum of dental caries-Evidence for a dynamic disease process, J. Dent. Res, vol.83, pp.39-42, 2004.

D. M. Deng and J. M. Cate, Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor, Caries Res, vol.38, pp.54-61, 2004.

P. Totiam, C. González-cabezas, M. R. Fontana, and D. T. Zero, A new in vitro model to study the relationship of gap size and secondary caries, Caries Res, vol.41, pp.467-473, 2007.

J. A. Horst, J. M. Tanzer, and P. M. Milgrom, Fluorides and Other Preventive Strategies for Tooth Decay, Dent. Clin. N. Am, vol.62, pp.207-234, 2018.

E. K. Mahoney and N. M. Kilpatrick, Dental erosion: Part 1. Aetiology and prevalence of dental erosion, N. Z. Dent. J, vol.99, pp.33-41, 2003.

A. Davari, E. Ataei, and H. Assarzadeh, Dentin Hypersensitivity: Etiology, Diagnosis and Treatment; A Literature Review, J. Dent, vol.14, pp.136-145, 2013.

Z. Dai, M. Liu, Y. Ma, L. Cao, H. H. Xu et al., Effects of Fluoride and Calcium Phosphate Materials on Remineralization of Mild and Severe White Spot Lesions, p.23, 2019.

E. Pepla, L. K. Besharat, G. Palaia, G. Tenore, and G. Migliau, Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature, Ann. Stomatol. (Roma), vol.5, pp.108-114, 2014.

A. Nozari, S. Ajami, A. Rafiei, and E. Niazi, Impact of Nano Hydroxyapatite, Nano Silver Fluoride and Sodium Fluoride Varnish on Primary Teeth Enamel Remineralization: An In Vitro Study, J. Clin. Diagn. Res, vol.11, pp.97-100, 2017.

J. Vandiver, D. Dean, N. Patel, W. Bonfield, and C. Ortiz, Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy, Biomaterials, vol.26, pp.271-283, 2005.

L. Li, H. Pan, J. Tao, X. Xu, C. Mao et al., Repair of enamel by using hydroxyapatite nanoparticles as the building blocks, J. Mater. Chem, vol.18, pp.4079-4084, 2008.

J. S. Swarup and A. Rao, Enamel surface remineralization: Using synthetic nanohydroxyapatite, Contemp. Clin. Dent, vol.3, pp.433-436, 2012.

N. Roveri, E. Battistella, C. L. Bianchi, I. Foltran, E. Foresti et al., Surface Enamel Remineralization: Biomimetic Apatite Nanocrystals and Fluoride Ions Different Effects, p.19, 2019.

H. Chen, B. H. Clarkson, K. Sun, and J. F. Mansfield, Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure, J. Colloid Interface Sci, vol.288, pp.97-103, 2005.

M. Vano, G. Derchi, A. Barone, and U. Covani, Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: A double-blind randomized controlled trial, Quintessence Int. Berl. Ger, vol.45, pp.703-711, 2014.

M. Vano, G. Derchi, A. Barone, R. Pinna, P. Usai et al., Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: A double-blind randomized controlled trial, Clin. Oral Investig, vol.22, pp.313-320, 2018.

A. Jena, S. Kala, and G. Shashirekha, Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: A scanning electron microscope analysis, J. Conserv. Dent, vol.20, pp.269-272, 2017.

J. M. Ramis, C. C. Coelho, A. Córdoba, P. A. Quadros, and M. Monjo, Safety Assessment of Nano-Hydroxyapatite as an Oral Care Ingredient according to the EU Cosmetics Regulation, vol.5, 2018.

T. Kani, M. Kani, A. Isozaki, H. Shintani, T. Ohashi et al., Effect to Apatite-containing Dentifrices on Dental Caries in School Children, J. Dent. Health, vol.39, pp.104-109, 1989.

A. Ebadifar, M. Nomani, and S. A. Fatemi, Effect of nano-hydroxyapatite toothpaste on microhardness ofartificial carious lesions created on extracted teeth, J. Dent. Res. Dent. Clin. Dent. Prospects, vol.11, pp.14-17, 2017.

K. Hiller, W. Buchalla, I. Grillmeier, C. Neubauer, and G. Schmalz, In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing, Sci. Rep, vol.8, p.4888, 2018.

A. Mielczarek and J. Michalik, The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study, Am. J. Dent, vol.27, pp.287-290, 2014.

P. Madhusudanan, P. Sv, R. Pillai, N. Varghese, S. George et al., Comparative Evaluation of Surface Microhardness of Artificially Demineralized Human Enamel with Nano hydroxyapatite, Calcium Phosphate, and Potassium Nitrate Remineralizing Agents: An In Vitro Study, Conserv. Dent. Endod. J, vol.3, pp.50-55, 2018.

R. Kulal, I. Jayanti, S. Sambashivaiah, and S. Bilchodmath, An In-vitro Comparison of Nano Hydroxyapatite, Novamin and Proargin Desensitizing Toothpastes-A SEM Study, J. Clin. Diagn. Res, vol.10, pp.51-54, 2016.

G. Orsini, M. Procaccini, L. Manzoli, F. Giuliodori, A. Lorenzini et al., A double-blind randomized-controlled trial comparing the desensitizing efficacy of a new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice, J. Clin. Periodontol, vol.37, pp.510-517, 2010.

G. Orsini, M. Procaccini, L. Manzoli, S. Sparabombe, P. Tiriduzzi et al., A 3-day randomized clinical trial to investigate the desensitizing properties of three dentifrices, J. Periodontol, vol.84, pp.65-73, 2013.

N. M. Gopinath, J. John, N. Nagappan, S. Prabhu, and E. S. Kumar, Evaluation of Dentifrice Containing Nano-hydroxyapatite for Dentinal Hypersensitivity: A Randomized Controlled Trial, Oral Health, vol.7, pp.118-122, 2015.

A. Jena and G. Shashirekha, Comparison of efficacy of three different desensitizing agents for in-office relief of dentin hypersensitivity: A 4 weeks clinical study, J. Conserv. Dent, vol.18, pp.389-393, 2015.

M. Bossù, M. Saccucci, A. Salucci, G. Di-giorgio, E. Bruni et al., Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: An effective option to fluoride toothpaste, J. Nanobiotechnol, vol.17, 2019.

W. D. Browning, S. D. Cho, and E. J. Deschepper, Effect of a nano-hydroxyapatite paste on bleaching-related tooth sensitivity, J. Esthet. Restor. Dent, vol.24, pp.268-276, 2012.

J. Jin, X. Xu, G. Lai, and K. Kunzelmann, Efficacy of tooth whitening with different calcium phosphate-based formulations, Eur. J. Oral Sci, vol.121, pp.382-388, 2013.

M. Niwa, T. Sato, W. Li, H. Aoki, H. Aoki et al., Polishing and whitening properties of toothpaste containing hydroxyapatite, J. Mater. Sci. Mater. Med, vol.12, pp.277-281, 2001.

V. C. Marinho, J. P. Higgins, A. Sheiham, and S. Logan, Fluoride toothpastes for preventing dental caries in children and adolescents, Cochrane Database Syst. Rev, 2003.

R. W. Evans and P. J. Dennison, The Caries Management System: An evidence-based preventive strategy for dental practitioners. Application for children and adolescents, Aust. Dent. J, vol.54, pp.381-389, 2009.

D. G. Pendrys and J. W. Stamm, Relationship of total fluoride intake to beneficial effects and enamel fluorosis, J. Dent. Res, vol.69, pp.529-538, 1990.

P. Tschoppe, D. L. Zandim, P. Martus, and A. M. Kielbassa, Enamel and dentine remineralization by nano-hydroxyapatite toothpastes, J. Dent, vol.39, pp.430-437, 2011.

N. Manchery, J. John, N. Nagappan, G. K. Subbiah, and P. Premnath, Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative in vitro study, Dent. Res. J, vol.16, pp.310-317, 2019.

M. Colombo, R. Beltrami, D. Rattalino, M. Mirando, M. Chiesa et al., Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study, Ann. Stomatol. (Roma), vol.7, pp.38-45, 2016.

K. Pajor, L. Pajchel, and J. Kolmas, Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology-A Review, Materials, vol.12, 2019.

C. Hannig, S. Basche, T. Burghardt, A. Al-ahmad, and M. Hannig, Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ, Clin. Oral Investig, vol.17, pp.805-814, 2013.

S. A. Hegazy and R. I. Salama, Antiplaque and remineralizing effects of Biorepair mouthwash: A comparative clinical trial, Pediatr. Dent. J, vol.26, pp.89-94, 2016.

A. Kensche, C. Holder, S. Basche, N. Tahan, C. Hannig et al., Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ, Arch. Oral Biol, vol.80, pp.18-26, 2017.

C. Palmieri, G. Magi, G. Orsini, A. Putignano, and B. Facinelli, Antibiofilm activity of zinc-carbonate hydroxyapatite nanocrystals against Streptococcus mutans and mitis group streptococci, Curr. Microbiol, vol.67, pp.679-681, 2013.

S. Lata, N. O. Varghese, and J. M. Varughese, Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: An in vitro comparative evaluation, J. Conserv. Dent, vol.13, pp.42-46, 2010.

M. Ceci, M. Mirando, R. Beltrami, M. Chiesa, and C. Poggio, Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: Atomic force microscopy studies, Scanning, vol.37, pp.327-334, 2015.

M. N. Hegde and A. Moany, Remineralization of enamel subsurface lesions with casein phosphopeptideamorphous calcium phosphate: A quantitative energy dispersive X-ray analysis using scanning electron microscopy: An in vitro study, J. Conserv. Dent, vol.15, pp.61-67, 2012.

A. J. White, L. H. Gracia, and M. E. Barbour, Inhibition of dental erosion by casein and casein-derived proteins, Caries Res, vol.45, pp.13-20, 2011.

S. K. Rao, G. S. Bhat, S. Aradhya, A. Devi, and M. Bhat, Study of the efficacy of toothpaste containing casein phosphopeptide in the prevention of dental caries: A randomized controlled trial in 12-to 15-year-old high caries risk children in Bangalore, India, Caries Res, vol.43, pp.430-435, 2009.

C. Poggio, M. Lombardini, M. Colombo, and S. Bianchi, Impact of two toothpastes on repairing enamel erosion produced by a soft drink: An AFM in vitro study, J. Dent, vol.38, pp.868-874, 2010.

C. Poggio, M. Lombardini, P. Vigorelli, and M. Ceci, Analysis of dentin/enamel remineralization by a CPP-ACP paste: AFM and SEM study, Scanning, vol.35, pp.366-374, 2013.

N. Grewal, V. Kudupudi, and S. Grewal, Surface remineralization potential of casein phosphopeptide-amorphous calcium phosphate on enamel eroded by cola-drinks: An in-situ model study, Contemp. Clin. Dent, vol.4, pp.331-337, 2013.

A. G. Cunha, A. A. De-vasconcelos, B. C. Borges, J. D. Vitoriano, C. Alves-junior et al., Efficacy of in-office bleaching techniques combined with the application of a casein phosphopeptide-amorphous calcium phosphate paste at different moments and its influence on enamel surface properties, Microsc. Res. Tech, vol.75, pp.1019-1025, 2012.

A. Sharma, A. Rao, R. Shenoy, and B. S. Suprabha, Comparative evaluation of Nano-hydroxyapatite and casein Phosphopeptide-amorphous calcium phosphate on the remineralization potential of early enamel lesions: An in vitro study, J. Orofac. Sci, vol.9, p.28, 2017.

E. C. Reynolds, Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: A review. Spec. Care Dent, vol.18, pp.8-16, 1998.

G. M. Oliveira, A. V. Ritter, H. O. Heymann, E. Swift, T. Donovan et al., Remineralization effect of CPP-ACP and fluoride for white spot lesions in vitro, J. Dent, vol.42, pp.1592-1602, 2014.

S. Shetty, M. N. Hegde, and T. P. Bopanna, Enamel remineralization assessment after treatment with three different remineralizing agents using surface microhardness: An in vitro study, J. Conserv. Dent, vol.17, pp.49-52, 2014.

H. Elgamily, E. Safwat, Z. Soliman, H. Salama, H. El-sayed et al., Antibacterial and Remineralization Efficacy of Casein Phosphopeptide, Glycomacropeptide Nanocomplex, and Probiotics in Experimental Toothpastes: An In Vitro Comparative Study, Eur. J. Dent, vol.13, pp.391-398, 2019.

L. L. Dai, M. L. Mei, C. H. Chu, and E. C. Lo, Mechanisms of Bioactive Glass on Caries Management: A Review, Materials, vol.12, p.4183, 2019.

J. R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomater, vol.9, pp.4457-4486, 2013.

A. Ramashetty-prabhakar and V. Arali, Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems, J. Dent. Res. Dent. Clin. Dent. Prospects, vol.3, pp.117-121, 2009.

M. Vollenweider, T. J. Brunner, S. Knecht, R. N. Grass, M. Zehnder et al., Remineralization of human dentin using ultrafine bioactive glass particles, Acta Biomater, vol.3, pp.936-943, 2007.

Y. Zhang, Z. Wang, T. Jiang, and Y. Wang, Biomimetic regulation of dentine remineralization by amino acid in vitro, Dent. Mater, vol.35, pp.298-309, 2019.

A. Burwell, D. Jennings, D. Muscle, and D. C. Greenspan, NovaMin and dentin hypersensitivity-in vitro evidence of efficacy, J. Clin. Dent, vol.21, pp.66-71, 2010.

B. M. Shivaprasad, P. Padmavati, and N. S. Nehal, Chair Side Application of NovaMin for the Treatment of Dentinal Hypersensitivity-A Novel Technique, J. Clin. Diagn. Res, vol.8, pp.5-08, 2014.

E. Fiume, J. Barberi, E. Verné, and F. Baino, Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies, J. Funct. Biomater, vol.9, p.24, 2018.

H. E. Skallevold, D. Rokaya, Z. Khurshid, and M. S. Zafar, Bioactive Glass Applications in Dentistry, Int. J. Mol. Sci, vol.20, 2019.

X. Sheng, W. Gong, Q. Hu, X. Chen, and Y. Dong, Mineral formation on dentin induced by nano-bioactive glass, Chin. Chem. Lett, vol.27, pp.1509-1514, 2016.

A. Aras, S. Celenk, M. S. Dogan, and E. Bardakci, Comparative evaluation of combined remineralization agents on demineralized tooth surface, Niger. J. Clin. Pract, vol.22, pp.1546-1552, 2019.

R. Rajendran, R. N. Kunjusankaran, R. Sandhya, A. Anilkumar, R. Santhosh et al., Comparative Evaluation of Remineralizing Potential of a Paste Containing Bioactive Glass and a Topical Cream Containing Casein Phosphopeptide-Amorphous Calcium Phosphate: An in Vitro Study, Pesqui. Bras. Em Odontopediatria E Clínica Integr, vol.19, p.4668, 2019.

S. Sauro, I. Thompson, and T. F. Watson, Effects of common dental materials used in preventive or operative dentistry on dentin permeability and remineralization, Oper. Dent, vol.36, pp.222-230, 2011.

I. Farooq, A. Majeed, E. Alshwaimi, and K. Almas, Title: Efficacy of a novel fluoride containing bioactive glass based dentifrice in remineralizing artificially induced demineralization in human enamel, vol.52, pp.447-455, 2019.

V. R. Patel, L. Shettar, S. Thakur, D. Gillam, and D. N. Kamala, A randomised clinical trial on the efficacy of 5% fluorocalcium phosphosilicate-containing novel bioactive glass toothpaste, J. Oral Rehabil, vol.46, pp.1121-1126, 2019.

Y. Xu, Q. Wu, Y. Chen, R. J. Smales, S. Shi et al., Antimicrobial effects of a bioactive glass combined with fluoride or triclosan on Streptococcus mutans biofilm, Arch. Oral Biol, vol.60, pp.1059-1065, 2015.

R. Rajan, R. Krishnan, B. Bhaskaran, and S. V. Kumar, A Polarized Light Microscopic Study to Comparatively evaluate Four Remineralizing Agents on Enamel viz CPP-ACPF, ReminPro, SHY-NM and Colgate Strong Teeth, Int. J. Clin. Pediatr. Dent, vol.8, pp.42-47, 2015.

R. Soares, I. D. De-ataide, M. Fernandes, and R. Lambor, Assessment of Enamel Remineralisation after Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study, J. Clin. Diagn. Res, vol.11, pp.136-141, 2017.

S. Ali, I. Farooq, and K. Iqbal, A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent, J, vol.26, pp.1-5, 2014.

M. Saffarpour, M. Mohammadi, M. Tahriri, and A. Zakerzadeh, Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules, J. Dent. Tehran Iran, vol.14, pp.212-222, 2017.

P. J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan et al., The potential risks of nanomaterials: A review carried out for ECETOC, Part. Fibre Toxicol, vol.3, p.11, 2006.

, Adverse Effects of Engineered Nanomaterials-2nd Edition, p.22, 2019.

, SCCS (Scientific Committee on Consumer Safety). Guidance on the Safety Assessment of Nanomaterials in Cosmetics

N. Halla, I. P. Fernandes, S. A. Heleno, P. Costa, Z. Boucherit-otmani et al., Cosmetics Preservation: A Review on Present Strategies. Molecules, vol.23, p.1571, 2018.

, Notes of Guidance for the Testing of Cosmetic Substances and Their Safety Evaluation, SCCS (Scientific Committee on Consumer Safety

, European Commission: Brussels, 2012.

G. Oberdörster, Determinants of the pathogenicity of man-made vitreous fibers (MMVF), Int. Arch. Occup. Environ. Health, vol.73, pp.60-68, 2000.

W. Utembe, K. Potgieter, A. B. Stefaniak, and M. Gulumian, Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials, Part. Fibre Toxicol, vol.12, 2015.

B. Hall, W. Steiling, B. Safford, M. Coroama, S. Tozer et al., European consumer exposure to cosmetic products, a framework for conducting population exposure assessments Part 2, Food Chem. Toxicol, vol.49, pp.408-422, 2011.

M. Gomez-berrada, A. Ficheux, I. Boudières, M. Chiter, A. Rielland et al., Consumption and exposure assessment to toothpaste in French families, Food Chem. Toxicol, vol.118, pp.24-31, 2018.

A. Bernard, N. Dornic, A. Roudot, and A. Ficheux, Probabilistic exposure assessment to face and oral care cosmetic products by the French population, Food Chem. Toxicol, vol.111, pp.511-524, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01724171

C. A. Strittholt, D. A. Mcmillan, T. He, R. A. Baker, and M. L. Barker, A randomized clinical study to assess ingestion of dentifrice by children, Regul. Toxicol. Pharmacol, vol.75, pp.66-71, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI