D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling et al., The deal.II Library, Version 9, J. Numer. Math, vol.1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02414571

A. Bedford and D. S. Drumheller, A variational theory of immiscible mixtures, Arch. Ration. Mech. Anal, vol.68, pp.37-51, 1978.

M. A. Biot, Mechanics of Deformation and Acoustic Propagation in Porous Media, J. Appl. Phys, vol.33, p.1482, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01368725

P. G. Ciarlet, The finite element method for elliptic problems, 1987.

O. Coussy and P. , , 2004.

O. Coussy, L. Dormieux, and E. Detournay, From mixture theory to Biot's approach for porous media, Int. J. Solids Struct, vol.35, issue.34, pp.4619-4635, 1998.

C. J. Van-duijn, A. Mikeli?, M. F. Wheeler, and T. Wick, Thermoporoelasticity via homogenization I. Modeling and formal two-scale expansions, Internat. J Engng Sci, vol.138, pp.1-25, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01650194

C. J. Van-duijn and A. Mikeli?, Mathematical Theory of Nonlinear Single-Phase Poroelasticity, preprint of the Darcy Center Eindhoven-Utrecht, The Netherlands, 2019.

C. K. Lee and C. C. Mei, Thermal consolidation in porous media by homogenization theory-I. Derivation of macroscale equations, Adv. Water Res, vol.20, pp.127-144, 1997.

C. K. Lee and C. C. Mei, Thermal consolidation in porous media by homogenization theory-II. Calculation of effective coefficients, Adv. Water Res, vol.20, pp.145-156, 1997.

R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 1998.

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, 1969.

D. F. Mctigue, Thermoelastic Response of Fluid-Saturated Porous Rock, J. Geophys. Res, vol.91, pp.9533-9542, 1986.

C. C. Mei and B. Vernescu, Homogenization methods for multiscale mechanics, 2010.

A. Mikeli? and M. F. Wheeler, On the interface law between a deformable porous medium containing a viscous fluid and an elastic body, Math. Models Methods Appl. Sci, vol.22, p.1250031, 2012.

D. Néron and D. Dureisseix, A computational strategy for thermo-poroelastic structures with a time-space interface coupling, Int. J. for Numer. Meth. Eng, vol.75, pp.1053-1084, 2007.

N. Noii and T. Wick, A phase-field description for pressurized and nonisothermal propagating fractures, Comput. Method. Appl. M, vol.351, pp.860-890, 2019.

T. Roubi?ek, Nonlinear Partial Differential Equations with Applications, 2005.

J. Rutqvist, L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing et al., Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models, Int. J. Rock Mech. Min. Sci, vol.38, pp.105-127, 2001.

E. Sanchez-palencia and E. , Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.129, 1980.

D. Tran, A. T. Settari, and L. Nghiem, Predicting growth and decay of hydraulicfracture witdh in porous media subjected to isothermal and nonisothermal flow, SPE J, vol.18, pp.781-794, 2013.

T. Wick, Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal. II library, Arch. Numer. Software, vol.1, pp.1-19, 2013.