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Abstract

In this paper we study the equations of semi-linear thermoporoelasticity. Starting
point is the dimensionless formulation in van Duijn et al [7] (C.J. van Duijn, A.
Mikelić, M. F. Wheeler, T. Wick, Internat. J Engng Sci., Vol. 138, 2019), which
was obtained by a formal two-scale expansion. Nonlinearities in the equations arise
through the fluid viscosity and the thermal conductivity, both may depend on tem-
perature, and through the coupling in the heat convection by the Darcy discharge
in the energy equation. The coupled system of equations involves as unknowns the
skeleton displacement, Darcy discharge, fluid pressure and temperature. We treat
the system in its incremental (i.e. time-discrete) form. We prove existence by apply-
ing a fundamental theorem of Brézis on pseudo-monotone operators. Moreover we
show that the free energy of the system acts as a Lyapunov functional. This yields
global stability in the time-stepping process. Our theoretical results are substantiated
with two-dimensional numerical tests using a monolithic formulation. Temporal dis-
cretization is based on the backward Euler scheme and finite elements are employed
for the spatial discretization. The semi-linear discrete system is solved with Newton’s
method. In the proposed numerical examples, different source terms are employed
and spatial mesh refinement studies show computational convergence.

Keywords: Thermoporoelasticity equations, heat convection by Darcy’s velocity,
free energy and stability, monolithic numerical scheme
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1. Introduction

In this paper we consider the equations for non-isothermal fluid flow through a de-
formable porous medium. Such equations arise, for example, in geothermal reservoir
modeling when the withdrawal or injection of fluid affects the mechanical properties
of the porous medium. They also arise in models for radioactive waste disposal in
geological clay formations, or when modeling non-isothermal hydraulic fracturing in
reservoirs, see e.g. [21, 17]. More details and related references are given in the work
of McTigue [13], Lewis & Schrefler [11, Section 10], and Rutquist et al [19].

This work is motivated by suggestions and collaborations with Professor M. F.
Wheeler of the University of Texas at Austin. She pointed out the importance of
thermoporoelasticity as well as the lack of a mathematical foundation of the equations
involved. This work is a first step in that direction.

The emphasis here is on the mathematical analysis of the equations. Therefore we
restrict the complexity of the underlying physical model and consider the case of a
homogeneous and isotropic porous medium that is fully saturated with a single fluid.

We also consider the fluid density and the density of the skeleton material to be
constant. However, we allow for a temperature dependence of the fluid viscosity and
we impose a certain (quadratic) growth of the thermal conductivity with temperature.
We return to this point at the end of this section, see Remark 1.

There are two main approaches that lead to the equations of thermoporoelasticity.
One is based on mixture theory, see for instance Bredford and Drumheller [2], and
uses the macroscopic mass balances of the fluid and solid grains as starting point.
This approach is detailed in Coussy [5], Lewis & Schrefler [11], and in the survey
article of Rutquist et al [19]. It yields a coupled system of equations for the skeleton
displacement, the fluid pressure and the temperature of the mixture.

The other is the multiscale approach, which uses as starting point the linear fluid-
skeleton interaction at the pore scale. This approach has a rigorous mathematical
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foundation in the isothermal case, see Mikelić & Wheeler [15]. We also refer the reader
to the monographs of Mei & Vernescu [14] and Sanchez-Palencia [20] for derivations
using two-scale expansions. In the non-isothermal case, the derivation of the macro-
scopic equations by means of a formal two-scale expansion was considered by Lee &
Mei [9, 10] and more recently by van Duijn et al [7]. The equations obtained in the
latter paper form the basis of our analysis.

The equations on the pore scale involve physical quantities that appear in the
description of the hydraulic, mechanical and thermal behavior. As shown in van
Duijn et al [7], these quantities can be combined into a number of dimensionless
parameters. This allows one to compare different physical effects. The result of the
two-scale expansion is a (dimensionless) formulation in terms of pressure (p, includes
the hydraulic component ), skeleton displacement (u, a vector in Rm (m = 2, 3)) and
temperature (ϑ). It comprises the equations:

Mass balance

∂tζ + a divvD = Q, (1)

where

vD = − k

η(ϑ)
∇p, (2)

and

ζ =
p−KSϑ

M
+ b divu; (3)

Momentum balance

− divσ = F, (4)

where

σ = Ge(u)− (bp+ (1− b)KSϑ) I, (5)

and
Ge(u) = 2µe(u) + λ divu I. (6)

Energy balance
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∂ϑ

∂t
+KT

∂

∂t

(
− ζ + divu

)
+ Cfv

D · ∇ϑ− div
(
β(ϑ)∇ϑ

)
= H. (7)

In this expression ζ is the incremental fluid content, e(u) =
1

2
(∇u + ∇uτ ) the

linearized strain tensor, vD the Darcy specific discharge, η = η(ϑ) the temperature
dependent viscosity and β(ϑ) the temperature dependent thermal diffusivity. Further
Q and H are source terms for, respectively, fluid volume and heat, and F is a given
body force. All other quantities are dimensionless parameters3. They are listed in
Table 1, where also their order of magnitude is given for typical rock and clay type
materials. This table is essentially taken from van Duijn et al [7].

Symbol Quantity Rock value Clay value
a macroscopic length/ characteristic

displacement or transport time/
consolidation time

103 102

b Biot’s coefficient O(1) O(1)
1/M compressibility coefficient O(10−1) O(10−1)
k permeability O(10−4) O(10−4)
β0 thermal diffusivity O(1) O(1)
KS solid expansion coefficient O(10−2) O(10−3)
KT thermoelastic coupling parameter O(10−4) O(10−7)
µ, λ Lamé’s coefficients O(1) O(1)
Cf fractional heat capacity O(1) O(1)

Table 1: Dimensionless parameters and order of magnitude

We consider equations (1)-(7) in a bounded domain Ω ⊂ Rm (m = 2, 3), whose
boundary ∂Ω is C1, and we take the time t ∈ (0, T ], where T > 0 may be arbitrarily
chosen. As initial-boundary conditions we have

div u = E0, ϑ = ϑin and p = pin in Ω as t = 0, (8)

and

u = 0, vD · ν = qd and β(ϑ)∇ϑ · ν = 0 at ∂Ω for 0 < t ≤ T. (9)

3The coefficient (1 − b)KS is frequently taken as an independent parameter, not directly linked
to KS or b (see e.g. [5]). Our results remain valid if (1 − b)KS is replaced in the momentum and
energy equations by some other parameter.
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Hence along the boundary of the domain, the system is mechanically fixed, isolated
for heat flow, but with prescribed fluid flow. We could have considered more general
boundary conditions. The choice in (9) was made for simplicity.

In equation (7) the heat transport has the form vD ·∇ϑ, i.e. with Darcy discharge
multiplying the gradient of the temperature. This is a direct consequence of the ALE
(Arbitrary Lagrangian-Euler) formulation used in van Duijn et al [7]. This term also
arises when applying the full Eulerian formulation in the energy equation at the pore
scale, as was shown in Lee & Mei [9, 10]. In Lewis & Schrefler [11] or Néron &
Dureisseix [16] it was derived from the mixture theory of Bredford & Drumheller [2].

Alternatively, one uses in the macroscopic description a direct formulation in terms
of the heat flux. This results in the convective transport term

div (ϑvD) (10)

Clearly, when div vD = 0, both formulations coincide.

In this paper we mainly focus on (7). However, we do show that if (10) is used,
the analysis goes along the same lines.

An important role in the analysis is played by the free energy associated with
system (1)-(7). As in van Duijn et al [7] it is given by

L =
1

2
Ge : e+

(p−KSϑ)2

2M
+
KSϑ

2

2KT

− F · u (11)

or, in terms of the incremental fluid content ζ,

L =
1

2
Ge : e+

(ζ − be : I)2

2M
+
KSϑ

2

2KT

− F · u. (12)

This expression reduces to the free energy in Biot [3] when ϑ = 0, i.e. the isothermal
case. It also has qualitatively the same form as the reduced potential in Coussy et al
[6]. Note that from (12)

∂L
∂e

= σ +KSϑI and
∂L
∂ζ

= p−KSϑ. (13)

In this paper we treat the time discrete version of system (1)-(7), i.e. we replace time
derivative in (1)-(7) by backwards finite differences.

In Section 2 we prove existence for the corresponding incremental problem and
we show that ∫

Ω

L dx (14)
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acts as a Lyapunov functional. This ensures global stability for the time discrete
problem. Section 3 gives equivalent results for the case where the heat convection
is given by expression (10). In Section 4 we demonstrate the effect of the thermo-
mechanical coupling by means of several numerical examples. Conclusions are given
in Section 5.

Remark 1. The existence proof of the incremental problem borrows ideas from van
Duijn & Mikelić [8]. Key point is to formulate the time discrete form of (1)-(7) in an
abstract framework and to show that the resulting operator is pseudo-monotone and
coercive. This approach was taken from the monograph of Rubiček [18], who in turn
uses the theory of pseudo-monotone operators of Brézis [12]. To prove coercivity of
the operator and to show that (14) is a Lyapunov functional, we need to assume that
the thermal diffusivity β(ϑ) satisfies a growth condition. This is required to balance the
effect of the thermal transport in the weak formulation. With respect to the viscosity
and diffusivity we assume

A1 η ∈ C(R) and there exist constants 0 < ηmin < ηmax such that ηmin ≤ η(ϑ) ≤ ηmax
for all ϑ ∈ R;

A2 β ∈ C(R) and there exist constants 0 < Cmin < Cmax and β0 > 0 such that

β0 + Cminϑ
2 ≤ β(ϑ) ≤ β0 + Cmaxϑ

2 for all ϑ ∈ R. (15)

Here

Cmin ≥
1

a

KS

KT

C2
fk

ηmin
.

According to Table 1, we have

Cmin ≥
{

10−5, rock values;
10−2, clay values.

(16)

Since ϑ = O(
∆T

T0
), where ∆T is a characteristic temperature variation and T0

a reference temperature, we have in practical terms ϑ = O(10−1) for which the
lower bound is nearly constant. Only for very large (unrealistic) values of ϑ the
growth of the lower bound has significance.

With respect to the other data we have

A3 Q,H ∈ C([0, T ];L2(Ω)), F ∈ C([0, T ];L2(Ω))m and qd ∈ C([0, T ];L2(∂Ω));
E0 ∈ L2(Ω).
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Remark 2. (Compatibility). As shown in this paper, conditions (8) and (9) suffice
for the existence of the incremental problem. However, in the numerical solutions or
when considering the continuous time case, e.g. see [8], one needs in addition the
compatibility condition ∫

Ω

E0 dx = 0. (17)

2. Existence and stability for time discrete problem

Our goal is to develop a mathematical theory for semi-linear thermoporoelasticity,
giving a stable discretization in a time. Since most of the thermodynamic modeling
corresponds to the time discrete quasi-static setting (see for instance [5]), we limit
our consideration to the incremental formulation. Correct modeling of the continuous
time case would require taking into the account other non-stationary phenomena.
This is outside the scope of this paper.

Following the classical time discretization of parabolic PDEs, we choose a small
discretization step τ > 0 and an integer N , such that N = T/τ . At each discrete
time tj = jτ , j = 0, 1, . . . , N, we set

uj(x) = u(x, tj), ϑ
j(x) = ϑ(x, tj), p

j(x) = p(x, tj), x ∈ Ω,
for the unknown functions and

Fj(x) = F(x, tj), Q
j(x) = Q(x, tj), H

j(x) = H(x, tj), x ∈ Ω; qd,j(x) = qd(x, tj), x ∈ ∂Ω
for given body forces, source/sink terms and boundary terms.

For convenience we rewrite (7) as

∂

∂t

(
a0ϑ−

KS

M
p+ (1− b)KS divu

)
+
KSCf
KT

vD · ∇ϑ− KS

KT

div

(
β(ϑ)∇ϑ

)
=
KS

KT

H =: H,

(18)

where a0 = KS/KT +K2
S/M .

Then we replace (2)-(6), (18) by its time discrete form, for j = 1, . . . , N,

− div

(
2µex(u

j) + λ divujI − bpj I− (1− b)KSϑ
j I
)

= Fj, (19)

∂τ

(
pj −KSϑ

j

M
+ b divuj

)
− a div

( k

η(ϑj)
∇pj

)
= Qj, (20)

∂τ

(
a0ϑ

j − KS

M
pj + (1− b)KS divuj

)
+
KSCf
KT

vD,j · ∇ϑj−

KS

KT

div

(
β(ϑj)∇ϑj

)
= Hj, (21)
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with

vD,j = − k

η(ϑj)
∇pj. (22)

Here ∂τ denotes the backward time difference, i.e. ∂τΦ := (Φj − Φj−1)/τ .

Initially, for j = 0, we have

div u0 = E0, ϑ0 = ϑin and p0 = pin, (23)

and at the boundary ∂Ω we have

uj = 0, vD,j · ν = qd,j and β(ϑ)∇ϑ · ν = 0. (24)

2.1. Existence of a solution to the incremental problem

The variational (or virtual work) formulation of equations (19)-(22), initial con-
ditions (23) and boundary conditions (24), reads:

Problem (IP) (incremental problem): Let W := H1
0 (Ω)m ×H1(Ω)2. Then for

given (U, π, Θ) ∈ W , find (u, p, ϑ) ∈ W ,
√
β(ϑ)∇ϑ ∈ L2(Ω)m, such that∫

Ω

2µe(u) : e(ξ) dx−
∫
Ω

(
bp+ (1− b)KSϑ− λ divu

)
div ξ dxdz =

∫
Ω

Fξ dx,

∀ξ ∈ H1
0 (Ω)m. (25)∫

Ω

∂τ

(
p−KSϑ

M
+ b divu

)
ψ dx+ a

∫
Ω

k

η(ϑ)
∇p · ∇ψ dx =∫

Ω

Qψ dx−
∫
∂Ω

qdψ dS, ∀ψ ∈ H1(Ω); (26)∫
Ω

∂τ

(
a0ϑ−

KS

M
p+ (1− b)KS divu

)
θ dx+

KSCf
KT

∫
Ω

vD · ∇ϑθ dx+

KS

KT

∫
Ω

β(ϑ)∇ϑ · ∇θ dx =

∫
Ω

Hθ dx, ∀θ ∈ W 1,r(Ω), r > m. (27)

Remark 3. (i) Note that the ”initial” conditions (U, π, Θ) are hidden in the back-
ward time differences:

∂τu =
u−U

τ
, ∂τp =

p− π
τ

and ∂τϑ =
ϑ−Θ
τ

.

(ii) Only for numerical purposes one needs U as initial condition. In (IP) only
div U is needed as initial condition.
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(iii) Concerning the notation in problem (IP): the data, i.e. Q,H,F and qd are
taken at times that correspond to the time of the discrete solution (u, p, ϑ).
Superscripts are therefore omitted.

Problem (IP) is semi-linear through the nonlinearities η(ϑ) and β(ϑ) and through
the heat convection due to the Darcy discharge∫

Ω

(vD · ∇ϑ)θ dx. (28)

Using the weak topology of W , problems arise with the continuity of expression (28).
In fact, for θ ∈ H1(Ω) (28) is not defined. No a priori information on the regularity
of div vD is available and no maximum principle for ϑ is to be expected.

To remedy this difficulty in the incremental setting, we follow the approach from
[8] and introduce a Friedrichs mollifier Kε, where ε is a small positive parameter (see
e.g. Rubiček [18, page 203]). The Darcy velocity vD in the nonlinear heat convection
term is replaced by the convolution vD ? Kε. Furthermore, in the same term and in
the heat conduction term, ϑ is replaced by the cut-off

Rε(ϑ) =


1/ε, for ϑ > 1/ε;
ϑ, for |ϑ| ≤ 1/ε;
−1/ε, for ϑ < −1/ε.

These changes allow us to use the theory of pseudo-monotone operators to study
the following regularized incremental problem:

Problem (IP)ε: Given (U, π, Θ) ∈ W , find (uε, pε, ϑε) ∈ W such that∫
Ω

2µe(uε) : e(ξ) dx−
∫
Ω

(
bpε + (1− b)KSϑ

ε − λ divuε
)
div ξ dx =

∫
Ω

Fξ dx,

∀ξ ∈ H1
0 (Ω)3. (29)∫

Ω

∂τ

(
pε −KSϑ

ε

M
+ b divuε

)
ψ dx+ a

∫
Ω

k

η(ϑε)
∇pε · ∇ψ dx =∫

Ω

Qψ dx−
∫
∂Ω

qdψ dS, ∀ψ ∈ H1(Ω); (30)∫
Ω

∂τ

(
a0ϑ

ε − KS

M
pε + (1− b)KS divuε

)
θ dx+

KSCf
KT

∫
Ω

Kε ? vD,ε · ∇Rε(ϑ
ε)θ dx+

KS

KT

∫
Ω

β(Rε(ϑ
ε))∇ϑε · ∇θ dx =

∫
Ω

Hθ dx, ∀θ ∈ H1(Ω). (31)
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Remark 4. Note that in problem (IP)ε, the temperature test function θ ∈ H1(Ω).
This is allowed because of the presence of the cutoff Rε(ϑ) in equation (31) and the
boundedness of Kε ? vD,ε. Later, this allows us to test (31) with the solution ϑε ∈
H1(Ω).

Proposition 5. Let ε > 0 be a small positive constant and let assumptions A1 − 3
be satisfied. Then Problem (IP)ε admits at least one solution (uε, pε, ϑε) ∈ W .

Proof. Following Rubiček [18] and van Duijn & Mikelić [8], we introduce a nonlinear
operator A, defined on W and with values in its dual W ′. It results from adding
1
τ
· (29), (30) and (31), which we write as, with (u, p, ϑ) ∈ W ,

A(u, p, ϑ) = b, (32)

where

〈A(u, p, ϑ), (ξ, ψ, θ)〉 :=
1

τ

∫
Ω

2µe(u) : e(ξ) dx− 1

τ

∫
Ω

((
bp+ (1− b)KSϑ(1− b)

−λ divu
)
div ξ + (

p−KSϑ

M
+ b divu)ψ + (a0ϑ−

KS

M
p+ (1− b)KS divu)θ

)
dx

+a

∫
Ω

k

η(ϑ)
∇p · ∇ψ dx+

KSCf
KT

∫
Ω

Kε ? vD · ∇Rε(ϑ)θ dx+

KS

KT

∫
Ω

β(Rε(ϑ))∇ϑ · ∇θ dx, ∀(ξ, ψ, θ) ∈ W, (33)

with vD = −k∇p/η(ϑ), and

〈b, (ξ, ψ, θ)〉 :=
1

τ

∫
Ω

(
F · ξ +

(π −KSΘ

M
+ b divU)ψ + (a0Θ −

KS

M
π+

(1− b)KS divU)θ

)
dx+

∫
Ω

Qψ dx−
∫
∂Ω

qdψ dS +

∫
Ω

Hθ dx, ∀(ξ, ψ, θ) ∈ W.

(34)

Obviously b ∈ W ′.
The idea is to show that A is a perturbed monotone operator: i.e. A is monotone

in its principal part containing derivatives of u, p and ϑ. To be precise, we show that
A is pseudomonotone and coercive. This allows us to apply Brézis’ theorem to (32)
(see [18, chapter 2]) to conclude existence for problem (IP)ε.
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For the comfort of the reader we recall that an operator A : W → W ′ is pseudo-
monotone if and only if A is bounded and

{ur, pr, ϑr}⇀ {u, p, ϑ} weakly inW,
lim sup
r→+∞

〈A(ur, pr, ϑr), (ur, pr, ϑr)

−(u, p, ϑ)〉 ≤ 0,

⇒
∀(v, ψ, θ) ∈ W,
〈A(u, p, ϑ), (u, p, ϑ)− (v, ψ, θ)〉 ≤
lim inf
r→+∞

〈A(ur, pr, ϑr), (ur, pr, ϑr)− (v, ψ, θ)〉,
(35)

The boundedness of A is immediate. It is enough to show that (35) holds for the
thermal convection operator

〈AT (p, ϑ), θ〉 :=

∫
Ω

Kε ? vD · ∇Rε(ϑ)θ dx.

For the other terms in A weak continuity and lower weak continuity are clear.

The weak convergence in W implies weak L2-convergence of vDr = k∇pr/η(ϑr).
Using the regularization properties of the convolution, we then have as r →∞

Kε ? vDr → Kε ? vD, uniformly in Ω.

Hence as r →∞, we have

〈AT (pr, ϑr), θ〉 =

∫
Ω

Kε ? vDr · ∇Rε(ϑr)θ dx→
∫
Ω

Kε ? vD · ∇Rε(ϑ)θ dx;

and

〈AT (pr, ϑr), θ〉 =

∫
Ω

Kε ? vDr · ∇Rε(ϑr)︸ ︷︷ ︸
weak L2 conv.

ϑr︸︷︷︸
strong L2 conv.

dx→
∫
Ω

Kε ? vD · ∇Rε(ϑ)ϑ dx.

This establishes pseudo monotonicity for AT and hence for A.

It remains to prove coercivity of the operator A.

Taking ξ = u, ψ = p and θ = ϑ in (33) yields

〈A(u, p, ϑ), (u, p, ϑ)〉 :=
2µ

τ

∫
Ω

|e(u)|2 dx+
1

τ

∫
Ω

(
λ| divu|2 +

(p−KSϑ)2

M
+
KSϑ

2

KT

)
dx

+a

∫
Ω

k

η(ϑ)
|∇p|2 dx+

KSCf
KT

∫
Ω

Kε ? vD · ∇Rε(ϑ)ϑ dx+
KS

KT

∫
Ω

β(Rε(ϑ))|∇ϑ|2 dx,

(36)

with vD = −k∇p/η(ϑ).
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By Young’s convolution inequality we have

||Kε ? vD||L2(Ω) ≤ ||vD||L2(Ω).

Hence the thermal transport term is estimated by, for any δ > 0 and with χ[−1/ε,1/ε](·)
denoting the characteristic function of the interval [−1/ε, 1/ε],

|
∫
Ω

Kε ? vD · ∇Rε(ϑ)ϑ dx| ≤ δ

2
||vD||2L2(Ω) +

1

2δ
||χ[−1/ε,1/ε](ϑ)ϑ∇ϑ||2L2(Ω)

Choosing δ =
aKTηmin
kKSCf

and using χ[−1/ε,1/ε](ϑ)ϑ2 ≤ R2
ε(ϑ), this gives

KSCf
KT

∫
Ω

Kε ? vD · ∇Rε(ϑ)ϑ dx ≥ −aηmin
2k
||vD||2L2(Ω)−

k

2aηmin
(
KSCf
KT

)2||Rε(ϑ)∇ϑ||2L2(Ω).

Then we estimate in (36), using assumptions A1 and A2,

a

∫
Ω

k

η(ϑ)
|∇p|2 dx+

KSCf
KT

∫
Ω

Kε ? vD · ∇Rε(ϑ)ϑ dx+
KS

KT

∫
Ω

β(Rε(ϑ))|∇ϑ|2 dx

≥ aηmin
2k
||vD||2L2(Ω) +

KS

KT

∫
Ω

(
β(Rε(ϑ))− 1

2a

KS

KT

C2
fk

ηmin
R2
ε(ϑ)

)
|∇ϑ|2 dx

≥ ak

2

ηmin
η2max

||∇p||2L2(Ω)m +
KS

KT

β0||∇ϑ||2L2(Ω)m +
k

2aηmin
(
KSCf
KT

)2||Rε(ϑ)∇ϑ||2L2(Ω)m .

(37)

This shows the coercivity of A and completes the proof.

Corollary 6. We have

div vD,ε = − div
( k

η(ϑε)
∇pε

)
∈ L2(Ω)m. (38)

Proof. Testing (32) with ξ = 0, θ = 0 and arbitrary ψ ∈ H1(Ω) gives the weak form
of (20), (24). Then the result is immediate.

Proposition 7. Let A1 − A3 be satisfied. Then Problem (IP) admits at least one
solution (u, p, ϑ) ∈ W , such that

√
β(ϑ)∇ϑ ∈ L2(Ω)3 .
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Proof. Dropping the last term in (37) yields a coercivity estimate that is independent
of ε. From this we deduce that there exists a constant C > 0, not depending on ε,
for which the coercivity estimate from the proof of Proposition 5 is independent of
the regularization parameter ε. Hence we have

||uε||H1
0 (Ω)3 + ||pε||H1(Ω) + ||ϑε||H1(Ω) ≤ C (39)

and
|| div vD,ε||L2(Ω) ≤ C. (40)

From these estimates, using weak compactness, we conclude that a subsequence
{(uε, pε, ϑε)}, denoted by the same subscript, and a triple (u, p, ϑ) ∈ W exists such
that

uε ⇀ u weakly in H1
0 (Ω)3, (41)

div uε ⇀ div u weakly in L2(Ω), (42)

pε ⇀ p weakly in H1(Ω), (43)

pε → p strongly in L2(Ω) and (a.e) on Ω, (44)

ϑε ⇀ ϑ weakly in H1(Ω), (45)

ϑε → ϑ strongly in L2(Ω) and (a.e) on Ω, (46)

vD,ε = − k

η(ϑε)
∇pε ⇀ vD = − k

η(ϑ)
∇p weakly in L2(Ω)3, (47)

div (vD,ε − vD) ⇀ 0 weakly in L2(Ω) and

(vD,ε − vD) · ν⇀ 0 weakly in H−1/2(∂Ω), (48)

as ε→ 0. The above convergence properties allow us to pass to the limit ε→ 0 in the
variational equations (29) and (30). Hence the limit (u, p, ϑ) satisfies equations (25)
and (26). Furthermore, subtracting equations (30) and (26) and testing the result by
ψ = pε − p yields

vD,ε → vD = − k

η(ϑ)
∇p strongly in L2(Ω). (49)

Passing to the limit ε → 0 in equation (31) is slightly more involved. We use again
the coercivity estimates (37).

First notice that, with Cmin :=
1

a

KS

KT

C2
fk

ηmin
, we have for any s ∈ R

β0 +
1

2a

KS

KT

C2
fk

ηmin
s2 =

1

2

Cmin
Cmax

(2Cmax
Cmin

β0 + Cmaxs
2
)

=
1

2

Cmin
Cmax

(
(
2Cmax
Cmin

− 1)β0 +
1

2

Cmin
Cmax

(β0 + Cmaxs
2)
)
>

1

2

Cmin
Cmax

β(s)), with A2.
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Applying this inequality to (37) yields

||
√
β(Rε(ϑε))∇ϑε||L2(Ω)m ≤ C (50)

where C is independent of ε. Then we deduce

Rε(ϑ
ε) ⇀ ϑ weakly in H1(Ω), (51)√

β(Rε(ϑε))∇ϑε ⇀
√
β(ϑ)∇ϑ weakly in L2(Ω)3, (52)

β(Rε(ϑ
ε))∇ϑε ⇀ β(ϑ)∇ϑ weakly in L3/2(Ω)3, (53)∫

Ω

Kε ? vD,ε · ∇Rε(ϑ
ε) θ dx→

∫
Ω

vD · ∇ϑ θ dx,∀θ ∈ C(Ω), (54)

as ε→ 0.
Using these results we may pass to the limit ε → 0 in equation (31) without

difficulty. It completes the proof of Proposition 7.

2.2. Time discrete Lyapunov functional and stability estimates for the time discretized
problem

To complete the study of the time discrete problem, we need to estimate the
behavior of solutions after at least O(1/τ) time steps.

In problem (IP), where the time step τ enters as parameter, one finds after in the
first step (u1, p1, ϑ1) from the initial values (div u, p, ϑ)|t=0 = (E0, ϑin, pin). The idea
is to repeat this procedure for an arbitrary number of steps. If L ∈ N, L ≤ N = T/τ ,
then (uL, pL, ϑL) denotes the time discrete approximation of the original quasi-static
equations, at t = tL = Lτ .

The corresponding free energy at t = tL reads

JL =

∫
Ω

(
µ|e(uL)|2 +

1

2

(
λ| divuL|2 +

(pL −KSϑ
L)2

M
+
KS(ϑL)2

KT

)
− FL · uL

)
dx.

(55)

It satisfies the following Lyapunov estimate.

Theorem 8. Under the conditions of Proposition 7 we have for each L ∈ N, L ≤
N = T/τ, the estimate:

JL + τ
L∑
j=1

(∫
∂Ω

qd,jpj dS +

∫
Ω

((Fj − Fj−1)

τ
uj−1 −Qjpj −Hjϑj

)
dx

)
+

τ
L∑
j=1

∫
Ω

(
akηmin

2

1

η(ϑj)2
|∇pj|2 +

1

2a

k

Cmaxηmin
(
KSCf
KT

)2β(ϑj))|∇ϑj|2
)
dx ≤ J0.

(56)

14



Here

J0 =

∫
Ω

(
µ|e(u0)|2 +

1

2

(
λ|E0|2 +

(pin −KSϑin)2

M
+
KSϑ

2
in

KT

)
− F0 · u0

)
dx.

Proof. We cannot use θ = ϑ as test function in the temperature equation (27). How-
ever, see Remark 4, this is allowed in equation (31) of the regularized problem (IP)ε.

At time t = tj, with j = 1, . . . , N, the equations in problem (IP)ε read∫
Ω

2µe(uε,j) : e(ξ) dx−
∫
Ω

(
bpε,j + (1− b)KSϑ

ε,j − λ divuε,j
)
div ξ dx =

∫
Ω

Fjξ dx,

∀ξ ∈ H1
0 (Ω)3. (57)∫

Ω

∂τ

(
pε,j −KSϑ

ε,j

M
+ b divuε,j

)
ψ dx+ a

∫
Ω

k

η(ϑε,j)
∇pε,j · ∇ψ dx =∫

Ω

Qjψ dx−
∫
∂Ω

qd,jψ dS, ∀ψ ∈ H1(Ω); (58)∫
Ω

∂τ

(
a0ϑ

ε,j − KS

M
pε,j + (1− b)KS div uε,j

)
θ dx+

KSCf
KT

∫
Ω

vD,j,ε · ∇ϑε,j θ dx+

KS

KT

∫
Ω

β(ϑε,j)∇ϑε,j · ∇θ dx =

∫
Ω

Hjθ dx, ∀θ ∈ H1(Ω) (59)

Next, we test (57) with ξ = (uε,j−uε,j−1)/τ , (58) with ψ = pε,j and (59) with θ = ϑj.
The resulting equalities are added and summed-up with respect to j from j = 1 to
j = L. Using the observations

(i) the cross terms containing the pressure, the volume strain and temperature cancel;

(ii)

L∑
j=1

(2µe(uε,j) : e(uε,j − uj−1,ε) ≥ µ|e(uε,L)|2 − µ|e(u0)|2;

(iii)

L∑
j=1

((
bpε,j + (1− b)KSϑ

ε,j − λ divuε,j
)
div (uε,j − uε,j−1)+

(pε,j − pε,j−1 −KS(ϑε,j − ϑε,j−1)
M

+ b div(uε,j − uε,j−1)
)
pε,j
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+
(
a0(ϑ

ε,j − ϑε,j−1)− KS

M
(pε,j − pε,j−1) + (1− b)KS div (uε,j − uε,j−1)

)
ϑε,j
)

≥ 1

2

(
λ| divuε,L|2 +

(pε,L −KSϑ
ε,L)2

M
+
KS(ϑε,L)2

KT

)
− 1

2

(
λ| divu0|2

+
(pin −KSϑin)2

M
+
KSϑ

2
in

KT

)
;

(iv) directly from inequalities (37) and (50)

L∑
j=1

∫
Ω

(
ak

η(ϑε,j)
|∇pε,j|2 +

KSCf
KT

Kε ? vD,j,ε · ∇Rε(ϑ
ε,j) ϑε,j +

KS

KT

β(ϑε,j)|∇ϑε,j|2
)
dx

≥ 1

2
akηmin||

∇pε,j

η(ϑε,j)
||2L2(Ω)m +

1

2a

k

Cmaxηmin
(
KSCf
KT

)2||
√
β(Rε(ϑε,j))∇ϑε,j||2L2(Ω)m .

(v)

L∑
j=1

∫
Ω

(
Fj(uε,j − uε,j−1) +Qjpε,j +Hjϑε,j

)
dx−

L∑
j=1

∫
∂Ω

qd,jpε,j dS =

∫
Ω

(FLuε,L − F0u0) dx+
L∑
j=1

∫
Ω

(
− (Fj − Fj−1)uε,j +Qjpε,j +Hjϑε,j

)
dx

−
L∑
j=1

∫
∂Ω

qd,jpε,j dS,

we obtain inequality (56) for (uε,j, pε,j, ϑε,j) . Then using the convergence properties
from the proof of Proposition 7, and the convexity of JL and the dissipative term, we
conclude that inequality (56) holds for (uj, pj, ϑj) as well.

Having established existence for the discrete problem (IP) in Proposition 7 and a
Lyapunov estimate in Theorem 8, we are in a position to obtain an estimate that is
uniform in the time step τ .

Corollary 9. There exists a constant C > 0 such that

||uL||2H1(Ω)3 + ||pL||2L2(Ω) + ||ϑL||2L2(Ω) + τ

L∑
j=1

∫
Ω

(|∇pj|2 + |∇ϑj|2) dx ≤ C, (60)

for all L and τ such that 1 ≤ L ≤ N = T/τ , with τ sufficiently small.
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3. Existence and stability for time discrete problem with thermal convec-
tion through heat fluxes, i.e. expression (10)

The goal of this section is to show that the theory developed in Section 2, applies
also to the model, where the heat transport through convection has the dimensionless
term div (Cfv

Dϑ).

Then system (19)-(21) becomes

− div

(
2µe(uj) + λ divujI − bpj I− (1− b)KSϑ

j I
)

= Fj, (61)

∂τ

(
pj −KSϑ

j

M
+ b divuj

)
− a div

( k

η(ϑj)
∇pj

)
= Qj, (62)

∂τ

(
a0ϑ

j − KS

M
pj + (1− b)KS divuj

)
+
KS

KT

div
(
Cfv

D,jϑj − β(ϑj)∇ϑj
)

= Hj, (63)

with vD,j given by (22).

The variational (or virtual work) formulation of equations (61)-(63), (22), subject
to conditions (23) and (24), reads:

Problem (IPdiv) (incremental problem): Let W := H1
0 (Ω)m ×H1(Ω)2. Then

for given (U, π, Θ) ∈ W , find (u, p, ϑ) ∈ W , with
√
β(ϑ)∇ϑ ∈ L2(Ω)m, such that

variational equations (25)-(26) are satisfied and∫
Ω

∂τ

(
a0ϑ−

KS

M
p+ (1− b)KS divu

)
θ dx+

KS

KT

∫
Ω

(
− CfvD ϑ+ β(ϑ)∇ϑ

)
· ∇θ dx

+
KSCf
KT

∫
∂Ω

qdϑθ dS =

∫
Ω

Hθ dx, ∀θ ∈ W 1,r(Ω), r > m. (64)

Problem (IPdiv) meets the same difficulties as problem (IP). Accordingly we
introduce the regularized incremental problem

Problem (IPdiv)ε: Given (U, π, Θ) ∈ W , find (uε, pε, ϑε) ∈ W such that

variational equations (29)-(30) are satisfied and∫
Ω

∂τ

(
a0ϑ

ε − KS

M
pε +KS(1− b) divuε

)
θ dx+

KS

KT

∫
Ω

(
− CfKε ? vD,ε Rε(ϑ

ε)+

β(Rε(ϑ
ε))∇ϑε

)
· ∇θ dx+

KSCf
KT

∫
∂Ω

qdRε(ϑ
ε)θ dS =

∫
Ω

Hθ dx, ∀θ ∈ H1(Ω). (65)
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Proposition 10. Let ε > 0 be a small positive constant and let assumptions A1− 3,
where we take qd ∈ C([0, T ];L∞(∂Ω)), be satisfied. Furthermore, let

1

τ
≥ 2CfCtr(Ω)||qδ||L∞(∂Ω), (66)

where Ctr(Ω) is the constant in the trace inequality between W 1,1(Ω) and L1(∂Ω).
Then Problem (IPdiv)ε admits at least one solution (uε, pε, ϑε) ∈ W .

Proof. The proof is identical to the proof of Proposition 5, except for the coercivity
estimate.

Taking ξ = uε, ψ = pε and θ = ϑε in (29)-(30), (65) yields

〈A(uε, pε, ϑε), (uε, pε, ϑε)〉 =
2µ

τ

∫
Ω

|e(uε)|2 dx+
1

τ

∫
Ω

(
λ| divuε|2 +

(pε −KSϑ
ε)2

M

+
KS(ϑε)2

KT

)
dx+ a

∫
Ω

k

η(ϑε)
|∇pε|2 dx− KSCf

KT

∫
Ω

Kε ? vD,ε · ∇ϑεRε(ϑ
ε) dx

+
KS

KT

∫
Ω

β(Rε(ϑ
ε))|∇ϑε|2 dx+

KSCf
KT

∫
∂Ω

qdRε(ϑ
ε)ϑε dS, (67)

with vD,ε = −k∇pε/η(ϑε).

The 4th integral containing the Darcy discharge is estimated in exactly same way
as the equivalent integral in the coercivity estimate of the proof of Proposition 5. We
only need to estimate the boundary integral in (67).

Using the trace theorem for the space W 1,1(Ω) yields

|
∫
∂Ω

qdRε(ϑ
ε)ϑε dS| ≤ ||qd||L∞(Ω)||Rε(ϑ

ε)ϑε||L1(∂Ω) ≤ ||qd||L∞(Ω)Ctr

∫
Ω

(|Rε(ϑ
ε)ϑε|

+|∇(Rε(ϑ
ε)ϑε)|) dx ≤ ||qd||L∞(Ω)Ctr(Ω)

( ∫
Ω

(ϑε)2 dx+ 2

∫
Ω

|Rε(ϑ
ε)||∇ϑε| dx

)
≤

||qd||L∞(Ω)Ctr(Ω)
( ∫

Ω

(ϑε)2 dx+ 2

∫
Ω

√
β(Rε(ϑε))√
Cmin

|∇ϑε| dx
)

The term in the last inequality containing

∫
Ω

√
β(Rε(ϑε))|∇ϑε| dx is controlled by

the L2-norm squared of
√
β(Rε(ϑε))∇ϑε in (67) and the term containing

∫
Ω

(ϑε)2 dx

can be collected with other

∫
Ω

(ϑε)2 dx terms in (67). With the coefficient KS/KT

multiplying ϑ2, this yields

KS

KT

(
1

τ
− CfCtr(Ω)||qd||L∞(∂Ω))

∫
Ω

(ϑε)2 dx.
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Hence condition (66) on the time step τ implies the coercivity.

Next, qd ∈ C([0, T ];L∞(∂Ω)) and adding (66) to the assumptions of Proposition
7, gives us, with an identical proof, the analogue for Problem (IPdiv):

Proposition 11. Let the conditions of Proposition 10 be satisfied. Then Problem
(IPdiv) admits at least one solution (u, p, ϑ) ∈ W , such that

√
β(ϑ)∇ϑ ∈ L2(Ω)3 .

The results from the time discrete Lyapunov functional from Section 2.2 are again
valid, with a minor change in the dissipative part. We omit the details.

4. Numerical examples

In this section, we confirm our theoretical results with several numerical tests. We
use the open-source finite element library deal.II [1] and specifically an adaptation of
the multiphysics template [22].

4.1. Solution algorithms and discretization

The discretization of the variational system (25),(26), and (27) is undertaken
in a monolithic fashion in which the three equations are solved all-at-once. The
technique and a corresponding implementation are discussed for a similar-type three-
equation-problem in [22]. For temporal discretization a backward Euler scheme is
used as usually done for porous media applications. Spatial discretization is based
on a Galerkin finite element scheme. We introduce H1 conforming discrete spaces
(see e.g., [4]), which consist of continuous bilinear functions Qc

1. The temperature
equation is semi-linear due to the term ∇pj · ∇ϑj. For high Péclet numbers this
transport term would require upwinding. However, Assumption A2 on β(ϑ) (see (16)),
limits the effect of the Péclet number. Hence we use a Newton linearization (with a
tolerance of TOLNew = 10−9) for which we again refer to [22]. For more comments
on the numerical treatment of this term we refer to [16]. All other couplings are
linear. Therefore, we have a slightly nonlinear behavior for which Newton’s method
converges in a few steps (in the below examples, we observe 2− 3 Newton steps).

4.2. Configuration and parameters

We work on the domain Ω = (0, 1)2. The parameters are taken from the numerical
section in [7] and given in Table 2.

The domain is decomposed into quadrilaterals and are three times uniformly re-
fined. In some tests, we perform mesh refinement studies and work on four, five, six,
and seven times refined meshes. We compute N time steps with the time step size
∆t = 1, i.e., the final time is tN .
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SYMBOL QUANTITY PARAMETER VALUES
η dimensionless viscosity 1
Φ porosity 0.082
b Biot’s coefficient 0.95
µ 1st Lamé-Gassmann coefficient 0.656
λ 2nd Lamé - Gassmann coefficient 0.429
1/M compressibility coefficient 0.183
k scalar permeability 1.77 · 10−4

KS solid expansion coefficient 5 · 10−2

KT thermoelastic coupling parameter 3 · 10−4

a0 = KS/KT +K2
S/M 166.7

β0 thermal diffusivity 0.98

Table 2: Data description

For simplicity we take a constant viscosity η and a constant thermal diffusivity
β(ϑ) = β0. The values of ϑ are not large and Cminϑ

2 is negligible. Hence the effects
of the nonlinearity in β are not visible.

4.3. Example 1: Program verification with manufactured solutions

In this first numerical test, we construct manufactured solutions and compare
them to the numerically obtained values.

4.3.1. Initial and boundary conditions

As initial conditions, we set:

p|t=0 = p0 = x− y in Ω

ϑ|t=0 = 0 in Ω.

As boundary conditions, we use:

u = (0, 0)T on ∂Ω × (0, T )

vD · ν = −k(1,−1)Tν = qd,j on ∂Ω × (0, T )

β∇ϑ · ν = 0 on ∂Ω × (0, T ).

4.3.2. Manufactured solutions and resulting right hand sides

For the manufactured solutions p and ϑ, the right hand side in the momentum
equation will be

F = −µ∆u +∇(bp+Ks(1− b)ϑ− (λ+ µ)div u)
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where
u = ū(x− 1)2x2(y − 1)2y2 ∗ (1, 1)T

with ū = 0.1.
Next, in order to have limited in time source terms for the pressure and tempera-

ture equations, we introduce time cut-off terms for p and θ such that for t > cup and
t < clow with cup = 40 and clow = 10 the manufactured right hand side is independent
of the time t. It guarantees that the time evolution starts at t = clow and the solution
will stabilize exponentially fast to a stationary solution with ∇ϑ = 0 for t > cup.

Such a setting allows us to simulate a situation with concentrated point heat
sources, which can represent e.g. a buried nuclear waste, and with water coming
from the outer boundary and through production and injection wells. With this goal
in our mind, we use for the pressure and temperature the following manufactured
terms simulating point sources:

We chose the radius r = 0.1 and the middle point (x1, y1) = (0.5, 0.5) for point
source 1 and (x2, y2) = (0.7, 0.3) for point source 2. For the pressure, we take the
function

p = x− y + P0(t− clow)+(cup − t)+ ·
(

exp(
−r2

r2 − (x− x1)2 − (y − y1)2
)χB(x1,r)

+ exp(
−r2

r2 − (x− x2)2 − (y − y2)2
)χB(x2,r)

)
.

Here, P0 = 1. Clearly, for t > cup and t < clow, the gradient of p is given by:

∇p = (1,−1)T for t > cup, t < clow.

For clow ≤ t ≤ cup, we have

∇p = (1,−1)T − 2P0(t− clow)+(cup − t)+

·

(
exp(

−r2

r2 − (x− x1)2 − (y − y1)2
)χB(x1,r) ∗

r2(x− x1, y − y1)T

(r2 − (x− x1)2 − (y − y1)2)2

+ exp(
−r2

r2 − (x− x2)2 − (y − y2)2
)χB(x2,r) ∗

r2(x− x2, y − y2)T

(r2 − (x− x2)2 − (y − y2)2)2

)
We infer from these constructions that for t > cup and t < clow we should have

vD = −k
η
∇p = −k(1,−1)T ≈ 10−4(1,−1)T .

We use this expression to check our Darcy velocities in our numerical simulations
below.
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For the temperature, we propose a very similar construction as for the pressures:

ϑ = ϑ0 +Θ0(t− clow)+(cup − t)+
(

exp(
−r2

r2 − (x− x1)2 − (y − y1)2
)χB(x1,r)

+ exp(
−r2

r2 − (x− x2)2 − (y − y2)2
)χB(x2,r)

)
,

with Θ0 = 0.1 and ϑ0 = 0. With this, we have

ϑ = ϑ0 = 0 for t > cup and t < clow.

These formulas allow us to calculate the right hand sides for Q and H:

Q = ∂t(
p−Ksϑ

M
)− τc

τT
div(k∇p)

H = ∂t(a0ϑ−
Ks

M
p) +

KsCf
KT

vD · ∇ϑ− Ks

KT

div(β∇ϑ).

Clearly, with all constructions and cut-off times, we have

H = 0 for t > cup and t < clow.

For time t ∈ (clow, cup), the source terms Q and H are large, due to the steep deriva-
tives of the concentrated pics in p and ϑ. It would drive the whole system and the
final temperature will take a different value from the initial one.

4.3.3. Numerical simulations with one point source

We plug-in the previous terms into the system (25),(26), and (27) and solve nu-
merically as described above. Graphical results for t = 30 and t = 100 are shown in
the Figure 1 and 2. The evolution of several quantities of interest are shown in Figure
3. Therein, we observe a very good agreement of our theoretically predicted Darcy
velocities.

Table 3: Norm ‖ph(t) − p(t)‖L2 at t = 100 on different spatial meshes, where ph is the numerical
solution.

h ‖ph(t)− p(t)‖L2

1.76777e-01 1.70216e-01
8.83883e-02 1.74386e-01
4.41942e-02 5.94341e-02
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Figure 1: Example 1 (manufactured solution). Going from top left to bottom right: ux,uy, p, ϑ at
t = 30s with N = 30.
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Figure 2: Example 1 (manufactured solution). Going from top left to bottom right: ux,uy, p, ϑ at
t = 100s with N = 100. The temperature ϑ stabilized to a constant values ϑ = −1.188 6= 0.
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Figure 3: Example 1 (manufactured solution; one point source). Evolution over divu, the Lyapunov
functional, the Darcy velocities vD and the pressure and temperature L2 norms. Furthermore, we
plot the L2 norm of the temperature gradient and two mean values. Specifically, for the Darcy
velocities, we observe a very good agreement as predicted in our manufactured solutions. The Mean
1 corresponds to

∫
Ω

(p − KSϑ))(t) dx (the mean of the fluid content multiplies by M) and it is

conserved for t > cup and equal to zero. The Mean 2 corresponds to
∫
Ω

(a0ϑ − KS

M p)(t) dx and it
is conserved in time as well. The Lyapunov functional stabilized quickly for t > cup to a constant
value, confirming our stability results.
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4.3.4. Numerical simulations with two point sources

We now present a simulation with both point sources for the pressures and tem-
peratures. Graphical solution plots are provided in Figure 4 and the evolution of the
quantities of interest is shown in Figure 5.

Figure 4: Example 1 (manufactured solution; two point sources). Going from top left to bottom
right: ux,uy, p, ϑ at t = 30s with N = 30. We only plot t = 30s because t = 100s is very similar to
the previous numerical test.
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Figure 5: Example 1 (manufactured solution; two point sources). Evolution over divu, the Lyapunov
functional, the Darcy velocities vD and the pressure and temperature L2 norms. Furthermore, we
plot the L2 norm of the temperature gradient and two mean values. Specifically, for the Darcy
velocities, we observe a very good agreement as predicted in our manufactured solutions. All the
observations from Fig. 3, apply here as well.

4.4. Example 2: A given right hand side F j for the displacements

In this numerical test, the right hand side of the displacement equation is pre-
scribed:

F j = (1, 1)T , j = 0, . . . N,
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with N = 10. Other source terms are set zero, i.e. Qj = Hj = 0 for j = 1, . . . , N..
Further we set

uj = 0, vD,j · ν = 0 and β(ϑ)∇ϑ · ν = 0 along ∂Ω, for j = 1, . . . , N (68)

and initially we take
(u, p, ϑ)|t=0 = 0, in Ω.

We compute the solutions on three different meshes in order to study the compu-
tational stability with respect to mesh refinement. Our findings are shown in the
Figures 6 and 7.

Figure 6: Example 2 (volume force in the displacement equation). Going from top left to bottom
right: ux,uy, p, ϑ at t = 10s with N = 10.
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Figure 7: Example 2 (volume force in the displacement equation). Evolution of the Lyapunov
functional Jm and the maximum divu.

4.5. Example 3: A source term Qj in the pressure equation

In this numerical test, a time-dependent pressure source term is prescribed:

Q = t ∗ exp(−f((x− xc)2 + (y − yc)2)), xc = yc = 0.5,

with a parameter f = 10, t = tj, j = 0, . . . , N and with N = 100. For the other
source terms, we use F j = Hj = 0. The boundary and initial values are chosen as in
Example 2. We compute the solutions on three different meshes in order to study the
computational stability with respect to mesh refinement. In Figure 8, we observe the
final states of the three fields (ux,uy), p and ϑ. In Figure 9, the Lyapunov functional
and the maximum of divu are displayed for three different meshes. Here, we observe
qualitative convergence under spatial mesh refinement. Our results are plotted in the
Figures 8 and 9.
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Figure 8: Example 3 (pressure source). Going from top left to bottom right: ux,uy, p, ϑ at t = 100s
with N = 100.
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Figure 9: Example 3 (pressure source). Evolution of the Lyapunov functional J , divu, the compo-
nents of vD and the norms of the pressure and temperature, i.e., ‖p‖L2 and ‖T‖L2 , respectively.

4.6. Example 4: A heat source Hj

In this example, we keep all material parameters, boundary conditions and initial
data as before and take now a nonzero heat source, while setting F j = Qj = 0. To
this end, we use:

Hj = t ∗ exp(−f((x− xc)2 + (y − yc)2)), xc = yc = 0.5,
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with f = 100 and a parameter t = tj, j = 0, . . . , N with N = 100.

Figure 10: Example 4 (heat source). Going from top left to bottom right: ux,uy, p, ϑ at t = 100s
with N = 100. The pressure and temperature fields are nearly constant, which can be justified by
carefully studying the underlying system and also taking the boundary conditions into account.
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Figure 11: Example 4 (heat source). Evolution of the Lyapunov functional J , divu, the components
of vD and the norms of the pressure and temperature, i.e., ‖p‖L2 and ‖T‖L2 , respectively.

5. Conclusion

In this paper we have undertaken a study of the equations of semi-linear thermo-
poroelasticity in their incremental- i.e. time discrete - form. We prove existence of
a weak solution and use the natural free energy to construct a Lyapunov functional.
This implies global stability of the solution in the sense that one can repeat the
stepping procedure an arbitrary number of times.
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Our results apply to the setting where the fluid velocity is more important than the
velocity of the structure. In the vocabulary of Coussy [5] it is an Eulerian formulation,
where the main part of the velocity is the Darcy velocity, i.e. the relative velocity
between fluid and skeleton. The characteristic time of interest for us is the heat
convection time. We suppose a growth condition on the dimensionless heat diffusion
coefficient β(ϑ) in order to control the convection term for moderate Péclet number.

It is well-known that the heat diffusion coefficient is a strictly increasing function of
temperature. In the range of the temperature variations considered in this paper, it is
practically constant. The data, together with a discussion, are presented in Remark 1,
and the conclusion is that the nonlinear regularization of the heat diffusion coefficient
by the term Cminϑ

2 is negligible for the physical regime of the temperatures.
The nonlinearity of β plays a role only for large values of ϑ, were the validity of

the model is not clear any more.
Finally, in our numerical tests, we proposed characteristic settings in order to

study the behavior of the different solution components. Using a manufactured so-
lution, we could show very good agreements in Example 1 between analytical sug-
gestions and the numerically-computed values. Moreover in Example 2, we could
computationally show the robustness with respect to mesh refinement. Moreover,
our findings were studied in terms of several quantities of interest. The behavior of
the Lyapunov functional, the volume strain and the Darcy pressures are all plausible
and confirm with our theoretical findings.
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