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Transition metal dichalcogenides (TMDs) form a 
new class of semiconducting two-dimensional (2D) 
materials that display strongly bound electron–hole 
complexes [1–4]—such as excitons and trions—and 
original valley physics [5–8] up to room temperature. 
Furthermore, their unique layered structure allows 
them to be stacked in van der Waals heterostructures 
with atomically sharp and clean interfaces [9–11]. 
The combination of those novel properties with the 
versatility of layer engineering opens up new avenues 
for room-temperature excitonic complex formation 
and manipulation [12–14]. In particular, the model 
case of TMD heterobilayers with type-II (staggered) 
band alignment exhibits, upon light excitation, 
ultrafast charge transfer between layers [15–17] and 
luminescence at energies lower than the one generated 

by intralayer complexes [18–22]. This is interpreted as 
the formation of interlayer excitons where electrons 
and holes reside in different layers due to the staggered 
band alignment [22–26]. Promising properties of 
those emitters have been demonstrated, such as long 
lifetime [20, 27–29] and long spin-valley population 
time [29, 30], establishing them as good candidates 
to achieve coherent manipulation [31–34]. Yet, clear 
identification of the nature of these emitters and in situ 
control over them are crucial challenges that still need 
to be overcome.

In the case of individual monolayer TMDs, electro-
static tuning of the carrier density using a single gate 
has been key to unveiling the competition between 
delocalized excitonic complexes (neutral and charged 
excitons), as well as the presence of impurity-bound 
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Abstract
Due to their unique 2D nature, charge carriers in semiconducting transition metal dichalcogenides 
(TMDs) exhibit strong unscreened Coulomb interactions and sensitivity to defects and impurities. 
The versatility of van der Waals layer stacking allows spatially separating electrons and holes 
between different TMD layers with staggered band structure, yielding interlayer few-body excitonic 
complexes whose nature is still debated. Here we combine quantum Monte Carlo calculations with 
spectrally and temporally resolved photoluminescence (PL) measurements on a top- and bottom-
gated MoSe2/WSe2 heterostructure, and identify the emitters as impurity-bound interlayer excitonic 
complexes. Using independent electrostatic control of doping and out-of-plane electric field, we 
demonstrate control of the relative populations of neutral and charged complexes, their emission 
energies on a scale larger than their linewidth, and an increase of their lifetime into the microsecond 
regime. This work unveils new physics of confined carriers and is key to the development of novel 
optoelectronics applications.
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local states [5, 35, 36]. However, in heterobilayer junc-
tions this standard approach is insufficient to achieve 
unambiguous identification and control over the 
complexes [20, 37, 38]. This can be understood con-
sidering the spatial separation between electrons and 
holes residing in different layers. With carriers fur-
ther apart, interlayer complexes present much longer 
recombination lifetimes, as compared to their intra-
layer counter parts [27, 28], hence interlayer delocal-
ized carriers and/or complexes are more likely to dif-
fuse, interact and bind with charged impurities, thus 
forming localized complexes. Furthermore, stable 
interlayer complexes should present a permanent out-
of-plane dipole, introducing a strong dependence on 
the local electric field. Therefore, thorough charac-
terization and control over the complete local electro-
static environ ment, charge and field distributions, are 
required to reliably investigate excitonic complexes in 
this type of system.

Here, we make use of a dual-gated heterostruc-
ture design that allows independent control over the 
charge carrier density and out-of-plane electric field in 
a TMD heterobilayer junction. Tuning the carrier den-
sity modifies the luminescence intensity and lineshape, 
corresponding to a change in the relative populations 
of the stable complexes in the junction. Remarkably, 
we observe that the charged complexes present ener-
gies larger than the neutral ones, in contrast to the 
monolayer case. With the support of ab initio calcul-
ations [39], we unveil the localized, impurity-bound 
nature of the interlayer complexes yielding the strong-
est luminescence lines. This observation emphasizes 
the crucial role of defects in such confined system. Fur-
thermore, varying the electric field, we demonstrate 
control over a large range of the properties of these 
complexes such as their emission energy (due to the 
linear Stark effect) and their lifetime, enabling in situ 
manipulation of the complexes.

We fabricated a van der Waals heterostructure 
based on stacked MoSe2/WSe2 monolayers encapsu-
lated in multilayer hexagonal boron nitride (hBN), 
using a high-temperature flake transfer technique [40] 
(see figure 1(a) for a schematics and figure 1(b) for an 
optical micrograph). The two TMD monolayers are 
aligned following their straight edges and contacted 
with evaporated Ti/Au leads before complete hBN 
encapsulation. The substrate, made of highly doped Si 
below a 285 nm-thick SiO2 layer, acts as a global bot-
tom gate at potential Vb, while a thin 10 nm gold film 
deposited on top of the hBN is used as a transparent 
local top gate at potential Vt. The static electric field 
in the device is therefore entirely defined by the volt-
ages applied to both gates. We quantitatively evalu-
ate the out-of-plane field F(Vt, Vb) at the individual 
mono layers and their junction, from analytical and 
finite-element models (see SI S1 (stacks.iop.org/
TDM/6/035032/mmedia)). Effects of the potentials on 
the electrostatically induced change in carrier density 

n(Vt, Vb) of the flakes can also be extracted (see SI S1), 
allowing us to experimentally disentangle the response 
of the system to both the electric field and carrier den-
sity.

We performed spatially resolved photolumines-
cence (PL) spectroscopy at low temperature (30 K) 
to probe the formation of excitonic complexes in the 
two TMDs and their junction (figure 1(c)). First, we 
characterized each of the isolated monolayer flakes 
individually, away from the junction (purple and green 
solid lines in figure 1(c)), by monitoring the changes in 
their respective PL spectra induced by varying the car-
rier density (see SI S2). We observe the typical behav-
iour of delocalized complexes in TMD mono layers 
[35], and identify the intralayer exciton (at 1.64 eV 
for MoSe2 and 1.69 eV for WSe2) and trion (at 1.61 eV 
and 1.66 eV, respectively) lines, as well as a low energy 
tail related to complexes bound to localized impuri-
ties [35, 36] (around 1.55 eV and 1.6 eV, respectively; 
see the logarithmic scale plot in the bottom panel of 
figure 1(c), and the schematics of the corresponding 
complexes in figure 1(d)). We determine the carrier 
density yielding the strongest emission from the neu-
tral exciton and impurity-bound peaks for each flake 
(figure 1(e)). It corresponds to the configuration where 
the electrostatically injected carriers compensate the 
intrinsic doping [35]. We thereby evaluate the intrinsic 
impurity density of each flake (nMoSe2 and nWSe2, with 
the convention nXSe2  >  0 for donor type impurities). 
We find in our device that MoSe2 and WSe2 mono-
layers are respectively n- and slightly p -doped (nMoSe2 ~ 
5.1012 cm−2 and nWSe2 ~  −2.1011 cm−2). We note that 
these carrier densities, for which neutrality is obtained, 
are virtually independent of the applied out-of-plane 
field F (see SI S2). This is expected from the planar 
nature of the intralayer quasiparticles and further 
valid ates our disentangled study of n and F.

We now focus our attention on the interlayer com-
plexes by studying the PL emitted at the MoSe2/WSe2 
junction, spatially resolved in figure 1(b) and spec-
trally resolved in figure 1(c) (blue line). We observe a 
quenching of both of the intralayer lines and the emer-
gence of a spatially uniform low energy peak (between 
1.25 and 1.4 eV), as previously reported in the litera-
ture [20, 22, 26]. We can correctly reproduce the peak 
lineshape, over the full range of applied potentials (Vt, 
Vb), by introducing an empirical 3-Gaussian-line fit 
(dashed lines in figure 1(c)). In analogy with the pre-
vious identification of intralayer complexes in mono-
layers, the multi-component spectrum reflects the fact 
that several stable interlayer complexes are formed at 
the junction upon light excitation. Due to the type-II 
band alignment between MoSe2 and WSe2 [24, 26], 
these complexes comprise one or several electrons in 
the MoSe2 K-point conduction-band edge and one or 
several holes in the WSe2 K-point valence-band edge. 
During their long lifetime reported e.g. in [20, 27–29], 
photogenerated carriers can diffuse and interact with 
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charged impurities, and relax into their most stable 
excitonic configuration before radiative recombina-
tion. Our approach is therefore to theoretically con-
sider several different configurations for interlayer 
complexes, both delocalized and (localized) impurity-
bound, and identify the most stable ones.

We developed an ab initio approach, where the 
wavefunctions of different complexes are obtained 
using diffusion (DMC) and variational (VMC) 
quant um Monte Carlo calculations. As the precise 
nature of the donor impurities is unclear, we consider 
only the long-range part of the electrostatic interac-
tion and take into account interlayer Coulomb interac-
tions, polarization effects and screening from the hBN 
encapsulation, by considering a bilayer generalisation 
of the Keldysh potential [39, 41]. Following the exper-
imental characterization of the intrinsic doping of both 
flakes (nMoSe2  >  0 and |nWSe2 | � |nMoSe2 |, figure 1(e)), 
we introduced impurities in the model assuming that 
only positively charged donors (noted D+) are present 

in the sample, and only in the MoSe2 layer. We evalu-
ated the binding energies and radiative decay rates for 
the simplest few-carrier excitonic complexes, both 
delocalized and donor-bound, by numerically solving 
the corresponding few-body problem in the limit of 
small relative angle between MoSe2 and WSe2 lattices, 
which is experimentally provided by the alignment of 
the flake edges (see SI S3).

From this theoretical approach, we identified 
the two most stable complexes in the system, noted 
D0h and D0X , shown in figure 1(d) in real space 
and in figure 1(f) in band structure schematics. We 
emphasize here the role of the intrinsic impurities in 
the system since both of these complexes comprise 
donor-bound electrons in the MoSe2 layer (bound 
D+ + e, noted D0). In the first case (D0h), these neu-
tralized donors D0 can recombine with free holes h 
in the WSe2 layer, yielding photon emission at energy 

ED0h = Eg − Eb
D0h  =  1.337 eV (central panel of  

figure 2(a)), where Eg  =  1.500 eV is the interlayer 
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Figure 1. Impurity-bound interlayer complexes. (a) Schematics of the double-gated hBN/MoSe2/WSe2/hBN van der Waals 
heterostructure. The backgate consists of doped Si at potential Vb, and the topgate is made of a thin Au layer at potential Vt. (b) Real 
colour optical image of the corresponding fabricated device, where monolayers of MoSe2 and WSe2 and thin top gate are highlighted 
with purple, green and black dashed lines, respectively. A map of the PL intensity spectrally integrated between 1.25 and 1.4 eV is 
superimposed in shades of red. Scale bar is 5 µm. (c) PL spectra (solid lines) on linear (top) and logarithm (bottom) scales, measured 
on the MoSe2 monolayer (purple), WSe2 monolayer (green) and MoSe2/WSe2 heterobilayer (blue). Dashed lines present the three 
Gaussian components obtained by fitting the interlayer peak. Light excitation is at energy 2.1 eV, repetition rate 40 MHz and power 3 
µW. Temperature is T  =  30 K. (d) Real space schematics of the three intralayer (right) and two interlayer (left) complexes generated 
in the system. Electrons, holes and impurities are presented as blue, red and white disks, respectively. Dashed lines illustrate 
Coulomb binding. Purple arrows indicate the spectral ranges corresponding to the intralayer complexes in the MoSe2 luminescence 
spectrum in (c). (e) Normalized luminescence intensity of MoSe2 (purple) and WSe2 (green) unbound (full squares) and impurity 
bound (open circles) intralayer exciton peaks as functions of the electrostatically tuned carrier density n, at zero field F. The carrier 
densities at the maxima indicate the intrinsic doping of each monolayer (dashed vertical lines). (f) Bandstructure schematics of the 
two main interlayer complexes generated in the MoSe2/WSe2 heterobilayer according to ab initio calculations. The representation of 
the carriers is similar to the one in (d). Spatial extension of the wavefunctions are represented in light blue within the gap. Relative 
population of the complexes is tuned through the Fermi energy EF using carrier density n, while energy of the complexes is tuned 
through interlayer bandgap Eg using field F.

2D Mater. 6 (2019) 035032



4

F Vialla et al

bandgap between MoSe2 conduction and WSe2 valence 
bands (assumed here to fit the data, in good agreement 

with reported values [20, 24, 26]) and Eb
D0h  =  163 meV 

is the calculated binding energy of the complex. We 
note that the energy to dissociate h from D0 is small 

(Eb
D0h = Eb

D0  +  0.2 meV where Eb
D0 is the calculated 

binding energy of the neutral donor only), leaving the 
holes free even at the considered cryogenic temper ature.  

In the latter case, we refer to the complexes D0X  as 
donor-bound trions to emphasize the additional elec-
tron compared to D0h. However, our notation reflects 
their main dissociation channel, which is into a neu-
tral donor D0 and a delocalized interlayer exciton X. 
The complex D0X  can radiatively recombine leaving 
behind a neutral donor D0, and therefore emitting a 
photon at energy ED0X = Eg + Eb

D0 − Eb
D0X  =  1.385 eV 
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Figure 2. Carrier density dependence. (a) Diagrams of the three main radiative recombination processes in MoS2/WSe2 described 
in the text. Representation of carriers is similar to the one in figures 1(d) and (f). In the background, the WSe2 (green) and MoSe2 
(purple) layers illustrate where the carriers reside spatially. (b) Calculated PL spectra for a range of carrier densities at zero field. A 
constant empirical 20 meV broadening has been applied to the Gaussian curves. Colours of the three Gaussian components (dashed 
lines) forming the spectra (solid line) are chosen accordingly with the photons represented in (a). (c) Experimental PL spectra for 
the same carrier densities as in (b), with fixed zero field. The same colour scheme as in (b) is applied. Experimental conditions are 
similar to the ones described in figure 1(c). (d) Experimental (dots) and calculated (line) relative peak intensities, as functions of 
carrier density. The same colour scheme as in a is applied. Insets: Schematics illustrating the recombination mechanisms of unbound 
holes with electrons bound to impurities, whose nature varies with carrier density, with a rate that is governed by a cross section σ 
that includes both radiative and non-radiative processes. The representation of carriers and layers is the same as in (a).
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(right panel of figure 2(a)), where Eb
D0X  =  278 meV 

is the calculated D0X  total binding energy. Note that, 
although the absolute energy of the D0X  complex 
is lower than that of the neutral donor, the D0X  line 
appears at higher energy (by approximately 48 meV) 
compared to the D0h line. This is caused by the spe-
cific decay process into a strongly bound D0 state, 
whose binding energy promotes a larger emitted 
photon energy. Additionally, we calculated the radia-
tive recombination of each complex mediated by LO 
phonon emission, noted as D0h + ph (left panel of fig-
ure 2(a)) and D0X + ph. This process yields an addi-
tional luminescence line 33 meV below each corre-
sponding main line. We estimated a D0h + ph line of 
comparable intensity to the main luminescence peaks, 
and a much weaker D0X + ph signal which overlaps 
with the main D0h line and can be ignored (see SI S4).

To assign the processes to the respective observed 
PL lines, we experimentally varied both Vt and Vb, such 
that we measure the emission spectrum for a range of 
carrier densities, while keeping the out-of-plane field 
constant (see figure 2(c)). We observe that the carrier 
density mostly affects the relative amplitude between 
the lines, with minor redshift at large doping that can 
be attributed to screening of Coulomb interactions by 
free carriers. Strikingly, we find that the higher energy 
peak increases in intensity for higher n-type doping. 
Considering only delocalized complexes does not 
allow to reproduce the observed doping dependence: 
In the same way as in the case of delocalized intra-
layer complexes, calculations show that delocalized 
interlayer charged trions present a lower energy than 
delocalized neutral excitons (see SI S5). In contrast, 
the modelled localized charged complex D0X  appears 
at higher energy than neutral D0h, consistent with our 
experimental observations.

We corroborate this peak assignment by com-
paring our data to the calculated dependence of 
the emission intensities on the carrier density, as 
shown in figures 2(b) and (c). We model the relative 
populations of complexes assuming low thermally 
and photogenerated electron and hole densities 
(exper imentally  <5  ×  1011 cm−2), compared to the 
electrostatically injected carrier densities (exper-
imentally  >1012 cm−2). Considering our exper-
imental non-resonant excitation scheme, we estimate 
that unbound WSe2 holes and MoSe2 electrons are 
photogenerated in the system, which are able to dif-
fuse in their respective layer and, for the latter, can 
bind to impurities prior to any recombination. Thus, 
when electrons are electrostatically removed from 
the system (−nMoSe2  <  n  <  0), all photogenerated 
electrons get bound to the available donor impuri-
ties to form neutral donors D0. This leads to the pre-
ponderance of D0h complexes in the system, and 
hence stronger emission from the two low-energy 
lines attributed to their phonon-mediated and direct 
recombination, D0h + ph and D0h. In contrast, when 
all donors are neutralized by electrostatic electrons 

(0  <  n  <  nMoSe2), photogenerated electrons and holes 
will bind to the already formed D0, and start forming 
D0X  complexes at the expense of the D0h. To produce 
a quantitative analysis of the emission intensities, we 
model non-radiative recombination as both impurity-
driven and Auger processes by introducing the non-
radiative cross section σNR  for holes to recombine 
with electrons bound at donor sites (see insets of fig-
ure 2(d) and SI S6). By combining in steady-state con-
ditions the corre sponding non-radiative rates with the 
radiative recombination rates calculated from the MC 
approach, we obtain theoretical curves for the dop-
ing dependence of the relative peak intensities (lines 
in figure 2(d)) that follow well our experimental data 
(dots). Deviations from the model can be attributed to 
the finite temper ature and photodoping. In regards to 
photodoping, we find that increasing excitation power 
promotes the D0X  line against the one attributed to 
D0h (see SI S7). We relate this observation to the high 
injection of free electrons in MoSe2 with light, consist-
ent with our model.

Next, we fix the carrier density and observe the 
luminescence of the different peaks while varying the 
out-of-plane electric field F. The independent tuning 
of F leads to a clear change of the emission energies 
(figure 3(a)). We observe only minor variations in the 
lineshape over the experimental F-range, indicating 
that the population ratio between complexes is not sig-
nificantly modified by F. In strong contrast, we demon-
strate a large linear tuning of the emission energy, over 
a range of 100 meV, which is larger than the linewidth. 
We note that all three peaks attributed to the different 
complex recombinations show the same linear behav-
iour over the entire carrier density range investigated 
(see figure 3(b) and SI S9). We interpret this effect as a 
linear Stark shift resulting from the permanent dipole 
µ = e.d = 0.65 e · nm of the interlayer complexes, 
where e is the elementary charge and d  the interlayer 
distance. This can be taken into account in our model 
by considering a field-dependent interlayer bandgap 
Eg (F) = Eg (0) + µF . We experimentally extract a 
value µ = 0.9 ± 0.1 e · nm where the small discrep-
ancy could be explained by the difficulty of estimat-
ing the TMDs effective dielectric constant. This result 
confirms the spatial structure of the interlayer com-
plexes, where electrons and holes reside in different lay-
ers. The observed tuning range is orders of magnitude 
larger than the ones reported for TMD intralayer exci-
ton lines [42–44], and similar, yet slightly larger, to the 
one recently observed for interlayer excitons in homo-
bilayer structures [45]. We finally note that a similar 
design with only thin hBN layers as top and bottom 
dielectric spacers would yield a shift as high as 500 meV 
before reaching the breakdown of hBN [46]. This large 
electrostatic tuning shows great promises for optical 
modulators based on interlayer complexes.

We further characterized the interlayer emitters 
by measuring their integrated luminescence decay 
over time. We observe, as expected [20, 27–29], a slow 
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decay on timescales larger than tens of nanoseconds, 
and originally unveil the strong influence on the effec-
tive decay time of both carrier density (figure 4(a)) 
and out-of-plane electric field (figure 4(b)). While the 
decay at long timescales shows an exponential behav-
iour, and can be related to a lifetime τ, we find a sig-
nificantly faster decay at short timescales that is more 
pronounced for larger photon fluxes (see SI S10). In 
analogy with studies on mono- and multilayer TMDs 
[47, 48], we attribute this behaviour to fast many-body 
processes that remove electron–hole pairs before com-
plex formation, and effectively introduce a non-linear 

term in the decay expression (see SI S9). By fitting an 
analytical solution for the decay over time (lines in fig-
ures 4(a) and (b)) to the experimental data, we extract 
values of τ that are consistent for all the light fluencies 
investigated (points in figure 4(c)).

We demonstrate that tuning both n and F can 
strongly modify τ over orders of magnitude, up to val-
ues larger than 0.5 µs which corresponds to our exper-
imental resolution. The strong F dependence can stem 
from a polarization of the carrier orbitals in the differ-
ent layers, pulled closer at positive fields and further 
apart at negative fields, yielding shorter and longer 
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lifetimes respectively (see SI S10). We also find a sig-
nificant reduction of τ at large n that can be explained 
by the increase in non-radiative recombination events, 
in good agreement with the previously discussed 
decay rate model (dashed line in figure 4(c)). The 
corre sponding non-radiative hole cross section σNR  
is extracted for different fields, and is reported in fig-
ure 4(d). Looking back at the steady-state, the emis-
sion intensity is governed by the quantum yield (QY), 
defined as the ratio between radiative and total recom-
bination rates (or likewise the corresponding hole cross 
sections, see formula in the lower panel of figure 4(d) 
and SI S10). Fixing the σNR(F) values in the fitting of 
the theor etical QY to the experimental PL intensities, in 
the low carrier density regime (−nMoSe2  <  n  <  0), we 
can extract the radiative cross section (sum of σD0h(F) 
and σD0h+ph(F), relative to the D0h and D0h + ph emis-
sions respectively, see figure 4(d)). Here, we emphasize 
that we obtain an understanding that is fully consistent 
with both spectrally and temporally resolved measure-
ments. In particular, our study indicates that reaching 
neutrality in MoSe2 (n ~ −nMoSe2) with large negative 
field yields interesting experimental conditions with a 
lifetime in the microsecond regime and the largest QY. 

Our results can be used as the groundwork for further 
theoretical studies to achieve quantitative description 
of the mechanisms governing the field dependence in 
these original complexes.

In conclusion, we demonstrated, using electro-
static control of interlayer complexes in TMD, a large 
tuning of many of their properties that opens oppor-
tunities for studies as diverse as strong-coupling with 
cavities, trapping, lasing and condensation up to room 
temperature [49–51]. We also revealed the dominant 
role that intrinsic impurities play in the interlayer 
luminescence spectrum. This shows that crystal purity 
has to be considered carefully when developing novel 
optoelectronics applications that would rely on the 
large scale diffusion or electrostatic funnelling of delo-
calized interlayer complexes [34]. Finally, we note that 
the impurity-bound nature of the emitting interlayer 
complexes should lead to single photon emission at 
low impurity density, with possible entanglement of 
the polarisation of the emitted photon with the spin-
valley state of the electron left on the donor. In general, 
our clear understanding and unprecedented electrical 
control of the excitonic complexes generated in TMD 
heterobilayers, together with recent advances in val-
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leytronics, introduces promising guidelines for future 
innovation in quantum optoelectronics.

Methods

Sample preparation
Transition metal dichalcogenide monolayers are 
obtained from mechanical exfoliation of bulk 
materials (HQ Graphene) using polydimethylsiloxane 
(PDMS) sheets (Gel-Pak). Dry transfer transfer 
of the isolated flakes is performed using a PDMS/
Polypropylene carbonate (SigmaAldrich) transparent 
stamp deposited on a glass slide. Contact between a 
flake and the stamp in order to pick up the former is 
done at a temperature of 90 °C. Release of a flake from 
the stamp onto a substrate is done at a temperature 
of 110 °C. Metallic contacts are patterned using 
laser lithography on a photoresist prior to chemical 
development and metal evaporation.

Experimental set-up and data acquisition
All measurements are obtained placing the contacted 
heterostructure on a piezoelectric stage (Attocube), 
inside a closed-loop Helium cryostat (Oxford). PL 
measurements are performed using a homemade 
confocal microscope (Olympus x40 long working 
distance objective). Spectrally resolved measurements 
are performed using a supercontinuum laser (NKT 
Photonics) for excitation and a grating spectrometer 
coupled to a CCD camera (Andor) for detection. Time 
resolved measurements are performed using a pulsed 
laser diode with tunable repetition rate (Picoquant) for 
excitation and an avalanche photodiode coupled to a 
time-correlated counter (PicoHarp) for detection.
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