S. L. Stipp and M. F. Hochella, Structure and Bonding Environments at the Calcite Surface as Observed with X-Ray Photoelectron-Spectroscopy (XPS) and Low-Energy Electron-Diffraction (LEED), Geochim. Cosmochim. Acta, vol.55, pp.1723-1736, 1991.

M. Andersson, S. Dobberschtz, K. Sand, D. Tobler, J. D. Yoreo et al., A Microkinetic Model of Calcite Step Growth, Angew. Chem, vol.128, pp.1-6, 2016.

A. E. Van-driessche, L. G. Benning, J. D. Rodriguez-blanco, M. Ossorio, P. Bots et al., The Role and Implications of Bassanite as a Stable Precursor Phase to Gypsum Precipitation, Science, vol.336, pp.69-72, 2012.

C. Perdikouri, C. V. Putnis, A. Kasioptas, and A. Putnis, An atomic force microscopy study of the growth of a calcite surface as a function of calcium/total carbonate concentration ratio in solution at constant supersaturation, Crystal Growth Des, vol.9, pp.4344-4350, 2009.

J. N. Bracco, A. G. Stack, and C. I. Steefel, Upscaling Calcite Growth Rates from the Mesoscale to the Macroscale, Environ. Sci. Technol, vol.47, pp.7555-7562, 2013.

M. Wothers, D. D. Tommaso, Z. Du, and N. De-leeuw, Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling, CrystEngComm, vol.15, pp.5506-5514, 2013.

M. De-la-pierre, P. Raiteri, A. Stack, and J. Gale, Uncovering the Atomistic Mechanism for Calcite Step Growth, Angew. Chem. Int. Ed, vol.56, pp.8464-8467, 2017.

F. Bouville, E. Maire, S. Meille, B. V. De-moortèle, A. Stevenson et al., tough and stiff bioinspired ceramics from brittle constituents, Nature Mat, vol.13, pp.508-514, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01761560

K. Larsen, K. Bechgaard, and S. L. Stipp, The effect of the Ca 2+ to CO 2? 3 activity ratio on spiral growth at the calcite {1014} surface, Geochim. Cosmochim. Acta, vol.74, pp.2099-2109, 2010.

. Vitruvius, The ten books of architecture English -translation by, 1914.

Y. Wang, H. K. Christenson, and F. C. Meldrum, Confinement Leads to Control over Calcium Sulfate Polymorph, Adv. Funct. Mater, vol.23, pp.5615-5623, 2013.

F. Kohler, L. Gagliardi, O. Pierre-louis, and D. Dysthe, Cavity Formation in Confined Growing Crystals, Phys. Rev. Lett, p.96101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02285749

M. Merlini, M. Hanfland, and W. A. Crichton, CaCO 3 -III and CaCO 3 -VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle, Earth Planet. Sci. Lett, pp.265-271, 2012.

Y. Diao and R. Espinoza-marzal, Molecular insight into the nanoconfined calcitesolution interface, Proc. Natl. Acad. Sci, vol.113, pp.12047-12052, 2016.

S. Weiner,

L. Addadi, Crystallization Pathways in Biomineralization, Annu Rev. Mater. Res, 2011.

E. Weber and B. Pokroy, Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth, CrystEngComm, vol.17, p.5873, 2015.

C. Damle, A. Kumar, S. Sainkar, M. Bhagawat, and M. Sastry, Growth of Calcium Carbonate Crystals within Fatty Acid Bilayer Stacks, Langmuir, vol.18, p.6075, 2002.

J. Ihli, J. Clark, N. Kanwal, Y. Kim, M. Holden et al., Visualization of the effect of additives on the nanostructures of individual bio-inspired calcite crystals, Chem. Sci, 2019.

Y. Kim, J. D. Carloni, B. Demarchi, D. Sparks, D. G. Reid et al., Tuning hardness in calcite by incorporation of amino acids, Nature Mat, vol.15, pp.903-912, 2016.

, 12927, a computer program for speciation, batchreaction, one-dimensional transport and inverse geochemical calculations, U.S. Geological Survey

G. Montanari, L. Lakshtanov, D. Tobler, K. Dideriksen, K. N. Dalby et al., Effect of Aspartic Acid and Glycine on Calcite Growth, Crystal Growth Des, vol.16, pp.4813-4821, 2016.

D. Gasperino, A. Yeckel, B. Olmsted, M. Ward, and J. Derby, Mass transfer limitations at Crystallizing interfaces in an atomic force microscopy fluid cell: A finite element analysis. Langmuir, vol.22, pp.6578-6586, 2006.

M. Peruffo, M. Mbogoro, M. Adobes-vidal, and P. Unwin, Importance of mass transport and spatially heterogeneous flux processes for in situ atomic force microscopy measurements of crystal growth and dissolution kinetics, J. Phys. Chem. C, vol.120, pp.12100-12112, 2016.

A. Burgos-cara, C. Putnis, C. Rodriguez-navarro, and E. Ruiz-agudo, Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations, Geochim. Cosmochim. Acta, vol.179, pp.110-122, 2016.

C. Fan and H. Teng, Surface behavior of gypsum during dissolution, Chem. Geol, p.242, 2007.

B. Zareeipolgardani, A. Piednoir, and J. Colombani, Gypsum Dissolution Rate from Atomic Step Kinetics, Journal of Physical Chemistry C, vol.121, pp.9325-9330, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523924

J. Clark, J. Ihli, A. Schenk, Y. Kim, A. Kulak et al., Meldrum, F.; Robinson, I. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution, Nature Mater, vol.14, pp.780-784, 2015.

H. H. Teng, P. M. Dove, and J. J. De-yoreo, Kinetics of calcite growth : Surface processes and relationships to macroscopic rate laws, Geochim. Cosmochim. Acta, vol.64, pp.2255-2266, 2000.

P. M. Dove and M. F. Hochella, Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy. Geochim. Cosmochim, Acta, vol.57, pp.705-714, 1993.

H. H. Teng, P. M. Dove, C. A. Orme, and J. J. De-yoreo, Thermodynamics of calcite growth: Baseline for understanding biomineral formation, Science, vol.282, pp.724-727, 1998.

A. Stack and M. Grantham, Growth Rate of Calcite Steps As a Function of Aqueous Calcium-to-Carbonate Ratio: Independent Attachment and Detachment of Calcium and Carbonate Ions, Crystal Growth Des, vol.10, pp.1409-1413, 2010.

M. Hong and H. H. Teng, Implications of solution chemistry effects: Direction-specific restraints on the step kinetics of calcite growth, Geochim. Cosmochim. Acta, vol.141, pp.228-239, 2014.

K. K. Sand, D. J. Tobler, S. Dobberschütz, K. K. Larsen, E. Makovicky et al., Calcite Growth Kinetics: Dependence on Saturation Index, Ca 2+ :CO 2? 3 Activity Ratio, and Surface Atomic Structure, Crystal Growth Des, vol.16, pp.3602-3612, 2016.

J. Chung, I. Granja, M. Taylor, G. Mpourmpakis, J. Asplin et al., Molecular modifiers reveal a mechanism of pathological crystal growth inhibition, Nature, vol.536, pp.446-450, 2016.

E. Pachon-rodriguez, A. Piednoir, and J. Colombani, Pressure solution at the molecular scale, Phys. Rev. Lett, p.146102, 2011.

J. D. Yoreo, L. Zepeda-ruiz, R. Friddle, S. Qiu, L. E. Wasylenki et al.,

S. Stipp, C. Eggleston, and B. Nielsen, Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim. Cosmochim, Acta, vol.58, pp.3023-3033, 1994.

M. Schaebitz, R. Wirth, C. Janssen, and G. Dresen, First evidence of CaCO 3 -III and CaCO 3 -IIIb high-pressure polymorphs of calcite: Authigenically formed in near surface sediments, Am. Mineral, vol.100, p.1230, 2015.

N. Park, M. Kim, S. Langford, and J. Dickinson, Atomic layer wear of single-crystal calcite in aqueous solution scanning force microscopy, J. Applied Phys, vol.80, p.2680, 1996.

S. Elhadj, J. J. De-yoreo, J. R. Hoyer, and P. M. Dove, Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth, Proc. Natl. Acad. Sci, vol.103, pp.19237-19242, 2006.

A. Côté, R. Darkins, and D. Dufy, Deformation twinning and the role of amino acids and magnesium in calcite hardness from molecular simulation, PCCP, vol.17, pp.20178-20184, 2015.