R. B. Anderson and J. F. Bell, Geologic mapping and characterization of Gale Crater and 697 implications for its potential as a Mars Science Laboratory landing site, Int. J. Mars Sci. Exploration, vol.5, pp.76-698, 2010.

R. E. Arvidson, P. Bellutta, F. Calef, A. A. Fraeman, J. B. Garvin et al.,

E. Hamilton, M. Heverly, K. A. Iagnemma, J. R. Johnson, N. Lanza et al., , p.701

M. Mehta, R. V. Morris, H. E. Newsom, N. Rennó, D. Rubin et al., , p.702

A. R. Vasavada, J. Vizcaino, and R. C. Wiens, Terrain physical properties derived from orbital data 703 and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater, J. Geophys, 2014.

. Res and . Planets, , vol.119

M. G. Babechuk, M. Widdowson, and B. S. Kamber, Quantifying chemical weathering intensity and trace 706 element release from two contrasting basalt profiles, Deccan Traps, Chemical Geology, vol.363, pp.56-75, 2014.

S. G. Banham, S. Gupta, D. M. Rubin, J. A. Watkins, D. Y. Sumner et al., , p.708

K. S. Edgar, L. A. Stack, and K. M. , Reconstruction Of An Ancient Eolian Dune Field At Gale Crater, Mars: 709 Sedimentary Analysis Of The Stimson Formation, 47th Lunar Planet. Sci. Conf., #2346, 2016.

S. G. Banham, S. Gupta, J. Watkins, K. Edgett, D. Sumner et al.,

J. Barnes, D. Bell, R. Mackenzie, M. G. Ewing, N. Laporte et al., , 2018.

, Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on 713 the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology, vol.65, issue.4, pp.993-1042

D. Blake, Characterization and calibration of the CheMin mineralogical instrument on Mars 717 Science Laboratory, Space Sci. Rev, vol.170, pp.341-399, 2012.

C. S. Borlina, B. L. Ehlmann, and E. S. Kite, Modeling the thermal and physical evolution of Mount Sharp's 720 sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse, J. 721 Geophys. Res, vol.120, pp.1396-1414, 2015.

T. F. Bristow, The origin and implications of clay minerals from Yellowknife Bay, Gale 723 crater, Mars, Am. Mineral, vol.100, pp.824-836, 2015.

T. F. Bristow, Surveying Clay Mineral Diversity, The Murray Formation, Gale Crater, Mars. 725 48th Lunar Planet. Sci. Conf., #2462, 2017.

T. F. Bristow, Clay mineral diversity and abundance in sedimentary rocks at Gale Crater, Mars, 727 Scientific Advances, 2018.

B. Buggle, B. Glaser, U. Hambach, N. Gerasimenko, and S. Markovic, An evaluation of geochemical 729 weathering indices in loessepaleosol studies, Quat. Inter, vol.240, pp.12-21, 2011.

S. J. Chipera and D. L. Bish, FULLPAT: A full-pattern quantitative analysis program for X402 ray powder 731 diffraction using measured and calculated patterns, J. Appl. Crystallogr, vol.35, pp.744-403, 2002.

S. Clegg, Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded 734 geochemical database, Spectrochemica Acta Part B, vol.129, pp.64-85, 2016.

R. Cox, D. R. Lowe, and R. L. Cullers, The influence of sediment recycling and basement composition on 736 evolution of mudrock chemistry in the southwestern United States, Geochimica et Cosmochimica Acta, vol.59, pp.2919-2940, 1995.

E. Dehouck, S. M. Mclennan, P. Meslin, and A. Cousin, Constraints on abundance, composition, 740 and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars, J. Geophys. Res. 741 Planets, vol.119, pp.2640-2657, 2014.

E. Dehouck, S. M. Mclennan, E. C. Skute, and M. D. Dyar, Stability and fate of ferrihydrite during 744 episodes of water/rock interactions on early Mars: An experimental approach, J. Geophys. Res, vol.745, 2017.

C. Fedo, H. W. Nesbitt, and G. M. Young, Unraveling the effects of potassium metasomatism in 747 sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, p.748, 1995.

, Geology, vol.23, pp.921-924

C. Fedo, Facies Analysis And Basin Architecture Of The Upper Part Of The Murray Formation, p.750, 2017.

, Mars, 48th Lunar Planet. Sci. Conf., #1689

O. Forni, First detection of fluorine on Mars: implications for Gale crater's geochemistry, p.752, 2015.

, Geophy. Res. Letters

J. Frydenvang, Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, 754 Mars, Geophys. Res. Let, vol.44, pp.4716-4724, 2017.

E. Garzanti, M. Padoan, S. Andò, A. Resentini, G. Vezzoli et al., Weathering and relative 756 durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African 757 Rift, The Journal of Geology, vol.121, pp.547-580, 2013.

J. P. Grotzinger, A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, p.759, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01293840

. Mars, Science, vol.343

J. P. Grotzinger, Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale 761 crater, Mars, Science, p.350, 2015.

J. Hurowitz, Redox stratification of an ancient lake in Gale crater, Mars. Science, vol.356, p.763, 2017.

N. L. Lanza, High manganese concentrations in rocks at Gale crater, Mars, Geophysical Res, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131356

, Letters, vol.41, issue.16, pp.5755-5763

L. Deit, L. Hauber, E. Fueten, F. Pondrelli, M. Pio-rossi et al., Sequence of infilling events 767 in Gale Crater, Mars: Results from morphology, stratigraphy, and mineralogy, J. Geophys. Res, vol.118, pp.1-35, 2013.

L. Deit and L. , The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board 769 Curiosity, JGR-Planets, vol.121, pp.784-804, 2016.

N. Mangold, Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by 771 ChemCam onboard the Curiosity rover on Mars, JGR-Planets, 2015.

N. Mangold, Composition of conglomerates analyzed by the Curiosity rover: Implications for 773 Gale crater crust and sediment sources, J. Geophys. Res.-Planets, vol.121, pp.353-387, 2016.

N. Mangold, Classification scheme for sedimentary and igneous rocks in Gale crater, p.775, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02343910

, Icarus, vol.284, pp.1-17

M. S. , The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: 777 Science Objectives and Mast Unit Description, Space Sci Rev, vol.170, pp.95-166, 2012.

S. M. Mclennan, Weathering and global denudation, The Journal of Geology, vol.101, pp.295-303, 1993.

S. M. Mclennan, Elemental Geochemistry of Sedimentary Rocks in Yellowknife Bay, Gale 781 Crater, Mars. Science, vol.343, 2014.

P. Meslin, Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, p.783, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01010254

, Science, vol.341

A. Meunier, L. Caner, F. Hubert, A. El-albani, and D. Pret, The Weathering Intensity Scale (Wis): An 785 Alternative Approach Of The Chemical Index Of Alteration (CIA), Am. J. Sci, vol.313, pp.113-143, 2013.

R. Milliken, J. P. Grotzinger, and B. J. Thompson, Paleoclimate of Mars as captured by the stratigraphic 787 record in Gale crater, Geophy. Res. Let, vol.37, 2010.

R. V. Morris, Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock 789 at Gale crater, vol.113, pp.7071-7076, 2016.

S. M. Morrison, Crystal chemistry of martian minerals from Bradbury Landing through Naukluft 791 Plateau, American Mineralogist, 2018.

M. Nachon, Calcium sulfate veins characterized by the ChemCam instrument at Gale Crater, p.793, 2014.

, Mars. J. Geophys. Res, vol.119, pp.1991-2016

M. Nachon, Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale 795 crater, Mars. Icarus, vol.281, pp.121-136, 2017.

H. W. Nesbitt and G. M. Young, Early Proterozoic climates and plate motions inferred from major 797 element chemistry of lutites, Nature, vol.299, pp.715-717, 1982.

H. W. Nesbitt and G. M. Young, Petrogenesis of sediment in the absence of chemical weathering: effects 799 of abrasion and sorting on bulk composition and mineralogy, Sedimentology, vol.43, pp.341-358, 1996.

H. Newsom, Increasing Occurrence Of Sandstone Cemented With Calcium Sulfate On Mount 801 Sharp, 48th Lunar Planet. Sci. Conf. #2495, 2017.

A. Ollila, Trace Element Geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: Early 803 Results for Gale Crater from Bradbury Landing Site to Rocknest, J. Geophys. Res, vol.119, pp.18-31, 2014.

A. Parker, An index of weathering for silicate rocks, Geological Magazine, vol.107, pp.501-504, 1970.

F. Poulet, Quantitative compositional analysis of Martian mafic regions using the 806, 2009.

/. Mex, . Omega, and . Data, Petrological implications, vol.201, issue.2, pp.84-101

. Rampe, Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Mars, Earth Planet. Sci. Let, vol.471, pp.172-185, 2017.

W. Rapin, Hydration state of calcium sulfates in Gale crater, Mars: identification of basanite 810 veins, Earth Planet. Sci. Let, vol.452, pp.197-205, 2016.

F. Rivera-hernandez, 49 th LPSC, abstract 2973, 2018.

M. R. Salvatore, J. F. Mustard, J. W. Head, R. F. Cooper, D. R. Marchant et al., Development 813 of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for 814 Mars, Geochemica Cosmochemica Acta, vol.115, pp.137-161, 2013.

K. L. Siebach, M. B. Baker, J. P. Grotzinger, S. M. Mclennan, R. Gellert et al., , 2017.

, Sorting out Compositional Trends in Sedimentary Rocks of the Bradbury Group, p.817

. Mars, Journal of Geophysical Research, vol.122, pp.295-328

N. D. Sheldon, G. J. Retallack, and S. Tanaka, Geochemical Climofunctions from North American Soils 819 and Application to Paleosols across the Eocene-Oligocene Boundary in Oregon, The Journal of Geology, vol.820, pp.687-696, 2012.

N. Stein, J. P. Grotzinger, J. Schieber, N. Mangold, B. Hallet et al., Reply : Desiccation 822 cracks provide evidence of lake drying on Mars, p.823, 2018.

, Geology, vol.46, pp.515-518

S. R. Taylor and S. M. Mclennan, , p.378, 2009.

M. Thorpe, J. Hurowitz, and E. Dehouck, A Frigid Terrestrial Analog For The Paleoclimate Of Mars, Lunar 827 Planet. Sci. Conf., 48th, p.2599, 2017.

A. H. Treiman, Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on 829 Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater), J Geophys Res, vol.830, pp.75-106, 2016.

D. T. Vaniman, Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, p.343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303672

D. T. Vaniman, Calcium Sulfates At Gale Crater And Limitations On Gypsum Stability 48 th Lunar 835 Planet. Sci. Conf., #1661, 2017.

R. C. Wiens, The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: 837 Body Unit and Combined System Tests, Space Sci. Rev, 2012.

M. J. Wilson, Weathering of the primary rock-forming minerals: processes, products and rates, Clay, vol.839, pp.233-266, 2004.

S. Yang, F. Ding, and Z. Ding, Pleistocene chemical weathering history of Asian arid and semi-arid regions 841 recorded in loess deposits of China and Tajiki, Geochemica Cosmochemica Acta, vol.70, pp.1695-1709, 2006.