N

N

Direct-seismogram inversion for receiver-side structure
with uncertain source-time functions
Jan Dettmer, Stan E. Dosso, Thomas Bodin, Josip Stipcevic, Phil R.

Cummins

» To cite this version:

Jan Dettmer, Stan E. Dosso, Thomas Bodin, Josip Stipcevic, Phil R. Cummins. Direct-seismogram
inversion for receiver-side structure with uncertain source-time functions. Geophysical Journal Inter-
national, 2015, 203 (2), pp.1373-1387. 10.1093/gji/ggv375 . hal-02334197

HAL Id: hal-02334197
https://univ-lyonl.hal.science/hal-02334197

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://univ-lyon1.hal.science/hal-02334197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Geophysical Journal International

Geophys. J. Int. (2015) 203, 1373-1387
GJI Seismology

doi: 10.1093/gji/ggv375

Direct-seismogram inversion for receiver-side structure
with uncertain source-time functions

Jan Dettmer, ' Stan E.

and Phil R. Cummins?

Dosso,! Thomas Bodin,** Josip Stipéevi¢?»

1School of Earth and Ocean Sciences, University of Victoria, Victoria BC, Canada. E-mail: jand@uvic.ca

2Research School of Earth Sciences, Australian National University, Canberra ACT, Australia

3 Berkeley Seismological Laboratory, 215 McCone Hall, UC Berkeley, Berkeley CA 94720-4760, USA

4 Laboratoire de Géologie de Lyon, Ecole Normale Superieure de Lyon, Université de Lyon-1, CNRS, F-69364 Lyon Cedex 07, France
3 Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia

Accepted 2015 September 7. Received 2015 September 4; in original form 2014 December 17

SUMMARY

This paper presents direct-seismogram inversion (DSI) for receiver-side structure which treats
the source signal incident from below (the effective source—time function—STF) as a vector of
unknown parameters in a Bayesian framework. As a result, the DSI method developed here does
not require deconvolution by observed seismogram components as typically applied in receiver-
function inversion and avoids the problematic issue of choosing subjective tuning parameters in
this deconvolution. This results in more meaningful inversion results and uncertainty estimation
compared to classic receiver-function inversion. A rigorous derivation is presented of the
likelihood function required for unbiased inversion results. The STF is efficiently inferred by
a maximum-likelihood closed-form expression that does not require deconvolution by noisy
waveforms. Rather, deconvolution is only by predicted impulse responses for the unknown
environment (considered to be a 1-D, horizontally stratified medium). For a given realization
of the parameter vector which describes the medium below the station, data predictions are
computed as the convolution of the impulse response and the maximum-likelihood source
estimate for that medium. Therefore, the assumption of a Gaussian pulse with specified
parameters, typical for the prediction of receiver functions, is not required. Directly inverting
seismogram components has important consequences for the noise on the data. Since the signal
processing does not require filtering and deconvolution, data errors are less correlated and more
straightforward to model than those for receiver functions. This results in better inversion
results (parameter values and uncertainties), since assumptions made in the derivation of the
likelihood function are more likely to be met by the inversion process. The DSI method is
demonstrated for simulated waveforms and then applied to data for station Hyderabad on the
Indian craton. The measured data are inverted with both the new DSI and traditional receiver-
function inversion. All inversions are carried out for a trans-dimensional model that treats
the number of layers in the model as unknown. Results for DSI are consistent with previous
studies for the same location. The DSI has clear advantages in trans-dimensional inversion.
Uncertainty estimates appear more realistic (larger) in both model complexity (number of
layers) and in terms of seismic velocity profiles. Receiver-function inversion results in more
complex profiles (highly-layered structure) and suggests unreasonably small uncertainties.
This effect is likely also significant when the parametrization is considered to be fixed but
exacerbated for the trans-dimensional model: If hierarchical errors are poorly estimated, trans-
dimensional models overestimate the structure which produces unfavourable results for the
receiver-function inversion.

Key words: Inverse theory; Probability distributions; Computational seismology; Statistical
seismology.
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1 INTRODUCTION

The study of converted teleseismic waves is one of the most impor-
tant methods to infer receiver-side seismic structure of the Earth’s
crust and upper mantle. The coda of P and S waves contains large
numbers of converted phases and their multiples which can be used
to infer the shear wave velocity (V) structure and, to a lesser ex-
tent, the compressional wave velocity (V),) structure underneath a
receiver. Since the signals are complex superpositions of effects
related to the source, source—region, receiver—region and propaga-
tion path, initial efforts were directed at separating the source and
path effects from the local receiver-side effects (e.g. Phinney 1964;
Burdick & Langston 1977; Vinnik 1977; Langston 1979). This sep-
aration is achieved by deconvolving the vertical (D,) seismogram
component from the radial (D,) or transverse which produces a re-
ceiver function (RF). The RF can be interpreted as an approximation
of the response of local structure (a layer stack below the receiver)
to a plane wave incident from below (Bostock 2007). Early RF
work was based on forward modelling or linearized inversion which
both were widely applied (e.g. Owens et al. 1984; Owens 1987;
Ammon et al. 1990; Cassidy 1992). However, strong nonlinearities
can cause highly non-unique solutions and care must be taken in
the interpretation of results (Ammon et al. 1990; Cassidy 1992).

Over the last decade several nonlinear inversion examples have
shown the potential to infer complex and meaningful crust and
upper-mantle models from RF waveforms (e.g. Sambridge 1999;
Shapiro & Ritzwoller 2002; Frederiksen et al. 2003; Kiselev et al.
2008; Agostinetti & Malinverno 2010; Stipcevi¢ et al. 2011; Bodin
etal. 2012; Shen et al. 2012; Brillon et al. 2013). In particular, joint
inversion with other data types has been important in improving
constraints on V), and V; structure. For example, surface wave dis-
persion (SWD) data provide information about the absolute value
of velocities (Julia et al. 2000; TkalCi¢ et al. 2006) and can break
strong parameter correlations (Bodin ez al. 2012), such that the joint
inversion result is significantly better resolved than results for either
data set considered individually. Similarly, shear wave RF data can
contribute additional constraints on the V), and ¥, reducing uncer-
tainties (Vinnik et al. 2004), and teleseismic traveltime residuals
can constrain the V), structure (Vinnik et al. 2006; Kiselev et al.
2008).

Much work is also directed at using RF waveforms to image earth
structure by directly interpreting RFs and migrating data for several
stations to infer 2-D structure along profiles (Bostock & Rondenay
1999; Bostock 2002; Bostock et al. 2002; Kind et al. 2002;
Audet et al. 2009; Kind et al. 2012). While RF imaging has led
to significant tectonic insights, migration depends on seismic ve-
locity information and care must be taken in the interpretation with
respect to multiples. In addition, uncertainties of inferred parame-
ters may be difficult to estimate due to strong model assumptions.

All such inference techniques require removing the effects of
the source—time function (STF) from the seismograms which pro-
duces the RF. This is commonly achieved by deconvolution of
one component from another (Ammon 1991; Ligorria & Ammon
1999). Since deconvolution can be considered an ill-posed lin-
ear inverse problem where noise causes numerical instability, the
data processing typically includes some form of filtering and sta-
bilisation. Both the filtering and stabilisation require the subjec-
tive choice of control parameters and the effect of such choices
on the estimated seismic velocity profiles is difficult to quantify.
This is particularly problematic for studies that infer parameter
uncertainty estimates (e.g. Bayesian inversion) which can depend
strongly on tuning parameters. In addition, the interpretation of

fine structure from RF results may be strongly impacted by tuning
parameters.

To address deconvolution issues, Bodin et al. (2014) proposed a
cross-convolution misfit function that does not involve any decon-
volution (Menke & Levin 2003) and, conceptually, would have a
minimum at the true model parameters (for noise-free data with-
out any theory error). Similar approaches are also applied in blind
deconvolution (Royer ef al. 2012). Bodin et al. (2014) treated the
exponential of the negative of the cross-convolution misfit as a
likelihood function and applied it in probabilistic inversion. How-
ever, a proper likelihood function for probabilistic inference must
be derived from an assumption about the distribution of data er-
rors (e.g. Gaussian distributed) and residuals must be defined as a
difference between observed and predicted data vectors (Gelman
et al. 2003). This is not the case for a cross-convolution misfit,
which, to our knowledge, cannot be applied in a Bayesian formu-
lation. Note that a similar approach (basing a likelihood function
on conveniently-defined residuals rather than on the residual error
distribution) is also used by Stdhler & Sigloch (2014) for moment
tensor inversion.

This work represents a novel Bayesian inversion for receiver-side
structure that does not require deconvolution of observed seismo-
gram components, thereby avoiding the problem of choosing sub-
jective stabilisation parameters. The method considers the STF as
unknown and provides rigorous derivation of a likelihood function
which is required for unbiased inversion results (not the case in the
other approaches discussed above). Therefore, noise on the seismo-
grams (including theory error) is properly translated to parameter
uncertainties. Importantly, considering the STF as unknown results
in more meaningful uncertainty estimation that does not depend on
subjectively chosen tuning parameters. The inversion accounts for
the limited knowledge about the STF in the uncertainty estimates
for seismic velocities and provides a probabilistic estimate for the
effective STF incident from below.

2 PROCESSING OF RECEIVER
FUNCTIONS

At a receiver at the Earth’s surface, the seismogram D for a time
window after the P-wave arrival can be considered as the convo-
lution of an effective STF s(¢) with the impulse response £ of the
local structure

Dy(t) = s(1) * Eu (1),
D (t) = s(t) * E. (1),
D,(t) = s(t) * E/(2), (1

where D; are the vertical, radial and transverse components (i €
(v, r, 1)) and * indicates time-domain convolution. The impulse re-
sponses E; is only for the receiver-side structure and assumes an
impulsive plane wave incident from below (Bostock 2007). While
the following development can be extended to the transverse com-
ponent in a straightforward manner, D,(f) is not considered here
to improve clarity in the notation. This treatment also assumes the
instrument response to be either removed, considered as part of s(7),
or included in the impulse response (i.e. convolve the instrument
response with the impulse response).

The effective STF is considered to be the waveform due to a
distant earthquake (~30°-90° epicentral distance) that is incident
from below at the bottom of the deepest layer (for a given time
window). Hence, s(#) includes the effects of earthquake rupture as
well as effects due to complexities in the source region and due to
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propagation along a path from the source region to the deepest layer
beneath the receiver location. The shallow receiver-side structure is
considered to be represented by the unknown plane-wave impulse
responses E,(¢) and E,(¢). In general, s(¢) is unknown, can have com-
plex shape and is dependent on the particular earthquake. To infer
the local receiver-side structure, the unknown s(¢) needs to be sep-
arated from the unknown E;(f) (Burdick & Langston 1977; Vinnik
1977; Ammon 1991). Traditionally, this has been carried out by de-
convolving one component from the other which gives a waveform
referred to as a (P) RF (Ammon 1991). Since the radial component
shows the strongest signal for P-to-S conversions, radial P RFs are
most commonly considered. However, in recent years S RFs and
transverse RFs have received significant attention (Farra & Vinnik
2000; Kiselev et al. 2008; Miller & Piana Agostinetti 2012). Since
observed seismograms exhibit stochastic noise, deconvolution re-
quires stabilisation. For example, water-level stabilisation (Clayton
& Wiggins 1976) can be applied to the seismogram spectra to avoid
numerical instability and can preserve amplitudes. Following Am-
mon (1991) and Cassidy (1992), RF processing is typically carried
out in the frequency domain

H(w) = E (o) E}(0)G(w)/ (), @

where w is angular frequency and * denotes the complex conjugate.
The denominator @ includes the vertical-component spectrum and
a numerical water-level stabilisation ¢

®(w) = max {Ev(a))Ej(a)), ¢ max {Eu(a)/)E:(w’)}} . 3)

The Gaussian filter G(w) is given by
G(w) = £ exp (—a)z/4a2) , 4)

where £ normalizes the filter and a is a parameter to control the filter
width. Amplitudes of the RF are preserved by normalizing with

A(@) = Ey(@)E}(0)G(0)/ P(w). ®)

The RF is typically analysed in the time domain. A significant prac-
tical challenge is setting the two tuning parameters ¢ and a which
can both affect the resulting waveform significantly. The values for
these parameters are typically set by a trial-and-error approach and
can cause significant subjectivity. Further, both parameters intrin-
sically trade off resolvable structure and stability. Most commonly,
practitioners apply the smallest water level that produces stable re-
sults (judged subjectively and requiring experience) and apply a
filter width a such that the desired frequencies are present in the
signal (also subjectively trading off resolution and stability). Typical
values are a = 2.5 rad s~! for crustal studies and @ = 1 rad s! for
studies also considering the upper mantle. In Bayesian inversion,
the effect of uncertain ¢ and a parameters on inversion results is
difficult to quantify and limits useful applications. Other processing
approaches, such as iterative deconvolution (Ligorria & Ammon
1999) may provide some advantages but suffer from the same fun-
damental requirement for tuning parameters. A recently developed
Bayesian approach to deconvolution (Kolb & Lekic 2014) shows
promise to address the issue of tuning parameters but is not consid-
ered here due to the high computational cost.

As another concern, the Gaussian filter and deconvolution pro-
cesses change the noise characteristics of the data and can cause
significant challenges for Bayesian parameter and uncertainty esti-
mation. While Bayesian sampling has been applied to RFs (Bodin
et al. 2012; Shen et al. 2012; Brillon et al. 2013), the Bayesian for-
mulation fundamentally relies on assuming a statistical distribution
form for the residual errors (difference between observation and
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prediction). The assumed residual distribution is used to derive the
likelihood function which quantifies how well data are fit by the
model. To obtain meaningful inversion results with that likelihood
function, the actual residual errors must be reasonably consistent
with the assumption. Most commonly, residuals are considered to
be a combination of measurement error and theory error (due to
an imperfect model (Tarantola 2005)) and assumed to be Gaus-
sian distributed with zero mean and covariance C,. While Bayesian
methods can estimate C, from the data (referred to as hierarchical
models/estimation), limitations exist since the time series to esti-
mate correlations from is of finite length and correlations can be of
similar length.

In comparison to seismogram traces, which exhibit clear stochas-
tic noise, the noise on highly processed RF waveforms can be ex-
tremely correlated and difficult to quantify. Bodin et al. (2012)
and Dettmer et al. (2012) proposed hierarchical estimation of off-
diagonal (covariance ) terms in C, (assuming a simple covariance
matrix parametrization) to address the strong correlations. How-
ever, the simple types of correlation (e.g. correlations decay expo-
nentially with lag) have often failed to produce meaningful results
for RF inversion in practice.

3 LIKELIHOOD FUNCTION FOR
DIRECT-SEISMOGRAM INVERSION

This section develops a novel Bayesian approach to invert time-
domain waveforms (seismogram components) directly by treating
the STF as uncertain (model dependent) in the inversion. The work
is motivated by Bodin et al. (2014); however, we consider the STF to
be unknown and estimate it as part of the inversion. In addition, we
provide a rigorous derivation of a likelihood function for Bayesian
inversion that results in a general inversion method. Importantly,
assuming s(¢) as unknown results in probabilistically estimating s(¢)
as part of the inverse problem and accounts for the uncertainty
due to the fact that s(¢) is unknown. Therefore, the method has the
potential to be relevant to the problem of estimating the STF of
earthquakes as well as being potentially applicable to the inversion
of deep-earth phases (Flanagan & Shearer 1998; Menke & Levin
2003; Chambers et al. 2005; Idehara 2011; Pachhai ef al. 2014).

Bayesian inversion treats unknown parameters as random vari-
ables and uses probabilities to express the degree of belief that a
parameter value reflects reality. Parameter values and uncertainties
are inferred from the posterior probability density which combines
prior information (independent of the data) and data information
(through the likelihood function) to specify the state of knowledge
about the parameters. Bayesian inversion requires formulating a
model which includes a choice of physical theory, an appropriate
parametrization and a statistical characterisation of residual errors,
which together capture the response of the system under study. The
likelihood function of the model parameters originates from the sta-
tistical residual-error distribution and quantifies how well predic-
tions fit the data. Model selection (discriminating between possible
models) is an important component of Bayesian inversion and is
addressed here by trans-dimensional (trans-D) models (the number
of layers in the 1D Earth model is considered to be unknown). For-
mulating the likelihood function for the DSI with unknown STF is
the focus of this section. For a brief overview of trans-D Bayesian
inversion, the reader is referred to Appendix A.

In the following, a likelihood is derived to invert D, (f) and D,(f)
(eq. 1) jointly while assuming that both model parameters x and the
parametrized STF are unknown. Assuming that residual errors for
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D, (#) and D,(¢) are independent Gaussian distributed with zero mean
and covariance matrices oI and o1, respectively, the likelihood
function is given by (Tarantola 2005)

N;
L(x) = exp |:— Z |:2 log(27) + N; logo;

i

%Z (D), - D,-(x)),)zﬂ
1 o 2
o exp —Z N;logo; + %07 Z (D); = (Di(®);)

= exp[p(x)] , (0)
where i € {v, r}, N; = N is the number of time samples (same
number of samples on each component) and D;(x) is the predicted
seismogram component for the model parameters x. Considering

N discreet time samples, and substituting eq. (1) into eq. (6), the
log-likelihood function ¢ can be written as

N
p0=-3" [N logo, + (D), — (D,(x);)’ /202
j=1

+Nlogo, + (D)), — (D,(x));)’ /20,_2]

N Ny 2
- Z |:N10g0v + ((Dv)j - ZSIC(EU(X))jk> /203

j=1 k=1

A 2
+N10g o, + <(D))j - Zsk(Er(X))jk> /20_"2:|’
k=1

O

where s; are N; unknown source parameters that give the STF. In
eq. (7), both s (the source) and x (the receiver-side structure and
data error statistics) are unknown. In the following, we show how
to estimate s efficiently as part of a Bayesian sampling algorithm
for x.

Since s is unknown, eq. (7) could be solved by Bayesian sampling,
resulting in N; unknown STF parameters. However, a much more
efficient approach is to consider an analytic maximum likelihood
estimate of s (for a given parameter vector x) by taking the partial
derivative of ¢ with respect to the source d¢/ds; = 0. Solving for s
gives (see Appendix B for details)

D, * E,(x)/0? + D, * E,(x)/c}
E,(x)* E,(x)/02 + E.(X) % E.(x)/02’

s(X) = (®)

where division indicates time-domain deconvolution. Eq. (8) is a
maximum-likelihood source estimate for a given set of earth pa-
rameters X. Note that deconvolution here involves the predicted
earth impulse responses E, and E, rather than measured seismo-
grams as in standard RF analysis. The predicted impulse responses
are noise free and unlikely to cause numerical instability. For the
cases considered here, Ny < N (i.e. the STF is of shorter duration
than the seismograms) so that the problem is over-determined with
2N data and N, unknowns. However, this work does not address the
issue of an optimal STF length N; or the potential to regularize the
estimation of s. Such approaches can potentially further stabilize
the inversion for larger N;. To obtain s, consider the time domain
convolution of vectors u (the denominator in eq. 8) and s to give

vector w (the numerator in eq. 8) of lengths N,, Ny and N, = N, +
N; — 1, respectively,

w=uxs="Us, (&)

where U is a Toeplitz matrix of dimension N,, by N; whose non-zero
rows are given by

B Uy 0 . n
25 u
us Uz

U=|un, -1 . (10)

0 unp,
0 0
0 0 Un, Uy, -1

L 0 0 0 0 uy, |

Therefore, the deconvolution of w by u can be expressed as a discrete
linear inverse problem where eq. (9) is solved for s. Since this
problem is overdetermined, no exact solution exists and the linear
least-squares approach is to minimize ||{w — Us||, which gives a
solution s = (UTU)~'UTw. This solution is well defined provided
U has no small singular values, which is often the case if N > N;.
Here, s is solved for by the Lapack algorithm DGELSS (Anderson
et al. 1999) which computes the minimum-norm solution to ||w —
Us||,. To avoid instability, singular values smaller than 10~'? are
omitted in DGELSS. This stabilisation was sufficient in all inversion
work in this paper. To obtain the source estimate, the least squares
solution to eq. (9) is applied for the deconvolution in eq. (8).

Egs (7) and (8) can be used in a Bayesian inversion algorithm
to treat the environment parametrization, the STF and the noise
standard deviations o, and o, as unknown (Fig. 1). Hence, x, s, 0,
and o, are all estimated probabilistically and uncertainties reflect
the inability to specify precise values for these unknowns in the
inversion results (the posterior density). In particular, x, o, and o,
are explicitly sampled with a Metropolis-Hastings-Green algorithm

Propose model
(local structure x and standard deviations o, o)

¥

Compute impulse responses F,.(x) and E,,(x) (raysum)

Compute effective source s via eq. (8)
given E,.(x), Ey(x), Dy, Dy, 0y, 0y

Compute synthetic seismograms D,.(x), D,,(x)
by convolving effective source s with E,.(x) and E,,(x)

\

Compute log L(x) via eq. (6)

Figure 1. Schematic of evaluating the likelihood function in direct seismo-
gram inversion.
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Figure 2. Noisy simulated waveforms (dashed) for (a) vertical and (b) radial components. The range of data predictions produced by the Bayesian sampling
is shown as a density for each time sample (colour). Both waveforms are fit well in the inversion. (c) The true STF (dashed) and the probabilistic STF estimate

(colour) closely agree.

(Brooks et al. 2011), while s is implicitly sampled as a maximum-
likelihood estimate for each realisation of x (Fig. 1). This method
is a fully Bayesian approach to the source equalisation problem
without any requirement to find tuning parameters required in the
processing of RFs. In addition, the expressions in eqs (6)—(8) are
straightforward to generalize and can be applied to any number and
combinations of receiver components.

In this paper, time-domain stacked seismograms are considered
to improve the signal to noise ratio and to better meet the assump-
tion of Gaussian distributed errors. While stacking cancels noise,
it inevitably results in a loss (due to averaging) of the distinct in-
formation in the various seismograms and it may be advantageous
(at higher computational cost) to consider all waveforms jointly
(the total likelihood function then becomes the product over the
likelihood for each event). However, stacking also provides the ad-
vantage that the stacked seismograms from several events are more
likely to exhibit Gaussian data errors (by the central limit theorem).
Stacks are obtained by following the approach of Shearer (1991) and
Kumar et al. (2010). In particular, only events of similar magnitude
are considered (M,, ~ 6) and events are aligned on the P arrival
peak and sign reversal is applied when the P arrival amplitude is
negative. Formal normal move out correction is not considered here.
Rather, normal move out is addressed by limiting the events to a
small range of ray parameters (see Supporting Information Fig. S1
for details).

Although not considered in this paper, the application of this STF
estimation approach to dense arrays appears feasible and may result
in great benefits by reducing the requirement to stack over multiple
earthquake events. As long as several stations of an array share rea-
sonably similar receiver-side structure, such stations can be treated
together in eq. (8) by including a sum over their components. This
case could provide better constraints on the structure underneath

the array and also has potential to provide estimates of high-quality
STFs for individual events. Larger numbers of stations would result
in a better constrained problem (more data with independent noise
for the same number of unknowns).

4 INVERSION RESULTS

This section first considers results for simulated waveforms which
are generated by convolution of the impulse response for a layered
earth model with a complex STF. Then, observed waveforms for 350
events at the HYB station are time-domain stacked and inverted with
the new method presented in this paper. Those results are compared
to inversion of stacked RF for the same data.

4.1 Simulation

Synthetic seismograms are computed for a model that consists of
four isotropic, homogeneous layers over an isotropic half space. The
method of Frederiksen & Bostock (2000) is adapted to obtain the
impulse response for this layer stack. Next, an effective STF (see
Fig. 2) is convolved with the impulse response to produce radial
and vertical components. Gaussian noise (zero mean) is added with
standard deviations for radial and vertical components of ¢, = 0.012
and o, = 0.1, respectively. The different noise levels are chosen to
examine the hierarchical estimation of different noise levels for each
component via eqs (6) and (8).

The model is parametrized in terms of perturbations from a back-
ground model (Table 1). This parametrization has the advantage of
permitting changes in prior as a function of depth which is other-
wise not possible in trans-D partition models. The prior is chosen to
be £1.2 km s™! for ¥, and 0.1 for V,,/V;. Density is treated with
an empirical relationship (Gardner ef al. 1974).
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Table 1. Background model used for the inversion of
simulated data.

Depth (km) Ve (kms™h) V! Vs
0.0 25 1.8
15.0 3.0 1.8
115.0 4.0 1.82

The inversions were carried out on a computer cluster using
36 CPU cores. Each computer core simulates a particular Markov
chain and chains interact in terms of parallel tempering steps to
increase sampling efficiency (for details on the sampling algorithm,
see Dettmer et al. 2013). Convergence was judged by visual in-
spection of chain histories and marginal densities of the first and
last quarter of the sample (Dettmer e al. 2013). When no signif-
icant difference is visible, the inversion is stopped and considered
to have converged. Fig. 2 shows the simulated noisy seismograms
and the density of all data predictions. To obtain the density of data
predictions, a normalized histogram of all data predictions for mod-
els in the posterior sample is computed at each time sample. This
data-prediction density visualizes the range of data predictions that
are supported by the posterior. The range of predictions in Fig. 2
fits the simulated data well. Computed in the same way, the range
of STFs sampled by the posterior agrees closely with the true STF
that was used to generate the synthetic seismograms (Fig. 2). Fig. 3
considers the marginal densities for the noise standard deviations.
Both estimates are consistent with the true values, indicating that
the data are fit to noise level (no over or under fitting).

The main inversion results are presented in Fig. 4 in terms of
interface probability as a function of depth and marginal profile
densities for V and V,/V ratio. The positions of interfaces agree
closely with the true model for all major interfaces. The minor
discontinuity at 50 km depth is just resolved by the data. In addition,
the Vs values are well resolved throughout the model and agree
closely with the true model. The V,/V; ratio is not well resolved.
While some limited sensitivity exists above the large discontinuity
at 25 km depth, the parameter is essentially undetermined below
that depth. The limited sensitivity to the ¥,/ ratio is consistent
with the fact that most information in these data is due to P-to-S

=

0 L

10+ H ;
i 1
201 Ho

30 H

—
P

401 H oo

—

50 H

-_—
—

Depth (km)

601 1 \
701 H

80 1 H \

—
—

90+ H

|
|
|
|
|

—
—

100 Fp—
1.7181.9
VPNS ratio

0 0.05 0.1 2 3 4 5
Interface prob. Vg (ms)

Figure 4. True earth model (dashed) and inversion results in terms of in-
terface probability as a function of depth and profile marginal densities for
Vs and V), /V; ratio. The extent of the uniform prior bounds are also shown
(dashed).

conversions at the major interfaces. Hence, the data exhibit little
sensitivity to ¥, structure.

4.2 Application to the Hyderabad station, Indian craton

This section presents inversion results for the joint inversion of
vertical and radial seismogram components and surface SWD data
(Ekstrom 2011) for station Hyderabad (HYB), India. The station is
located on the eastern Dharwar craton that formed at 2.5 Gyr and
stabilized in the early Proterozoic (Kiselev ef al. 2008). The same
data have been considered previously (Bodin et al. 2014) albeit
with a different stacking method and fewer long periods in the SWD
data. Since this study only considers an isotropic, homogeneous and
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Figure 5. Observed (stacked) waveforms at station HYB (dashed) in terms of (a) vertical and (b) radial components. The range of data predictions produced
by the joint Bayesian inversion is shown as a density for each time sample (colour). Both waveforms are fit well in the inversion. (¢) The probabilistic STF

estimate (colour) for the time-stacked waveforms.

horizontally stratified model for the medium below the receiver, data
are limited to backazimuths of 260°-310° and slowness values be-
tween 0.056 and see Supporting Information Fig. S1). Transverse
components are not considered due to the same limitations in the
model. Multiples of P waves (PmP) may also have an effect on the
DSI method when they arrive beyond the extent of the parametrized
STF. However, the time-stacked waveforms for HYD do not show
evidence of a clear PmP (the first would be expected at ~14 s).
This may be due to weakly dipping structure that cause azimuthal
smearing which is averaged over in the stacking (Lombardi et al.
2008) and/or averaging over epicentral distances (while aligning on
the P arrival). Both effects are not straightforward to model and
would cause a substantial increase in computational cost. There-
fore, the results in the work do not include PmP multiples in the
synthetic seismograms. To obtain the data in Fig. 5, 350 earthquakes
of M, ~ 6 that occurred between 1997 and 2007 were stacked in the
time domain. The stacking follows the approach of Shearer (1991)
and Kumar et al. (2010). In particular, events are aligned on the P ar-
rival peak and sign reversal is applied when the P arrival amplitude
is negative. All traces are time windowed to a total length of 35 s
starting ~4 s before the P arrival. The events are then normalized to
equal energy and rotated to vertical, radial and tangential compo-
nents, and finally stacked (see Supporting Information Fig. S2 for
all waveforms contributing to the stack). The sampling rate of all
waveforms is 0.2 s. The resulting stack shows a short (~2 s), strong
signal on the vertical component for the P arrival (Fig. 5) which is
consistent with the magnitude of the earthquakes considered (M,, ~
6 earthquakes typically cause ruptures of ~10 km extent, limiting
the STF duration to a few seconds, Wells & Coppersmith (1994)).
The SWD data (Fig. 6) are extracted from Ekstrom (2011) and span
periods from 25 to 250 s. To simplify the treatment of the residual

4.8 - r

4.6

4.2+ ., F

Phase velocity (km/s)
Y
|

3.8 r
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Figure 6. Observed SWD data (dashed) for the region near station HYB
(Ekstrom 2011). The range of data predictions produced by the joint inver-
sion is shown as a density for each time sample (colour). The SWD data are
fit well in the inversion.

error statistics, resampling to even spacing in periods was applied
for a total of 21 points between 25 and 250 s.

The earth model is parametrized in terms of perturbations from a
background model (Table 2) and prior bounds are set to 1 km s~!
for V; and £0.1 for V,/V;. Since the SWD data extend to periods
of 250 s, they are sensitive to much greater depths than considered
feasible for this joint inversion. Hence, the model for the seismo-
gram data assumes a homogeneous half space below 350 km depth,
and the model for SWD data assumes a layered half space that
is based on a simplified reference model (see Table 2, Dziewon-
ski & Anderson 1981). The layered half space is perturbed by the
half-space value in the trans-D model for both V and V,/V;. In
this way, the model avoids extending the trans-D domain to great
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Table 2. Background model used for inversion of mea-
sured data. To 350 km depth, the values are applied to
both RF and SWD data, below that, the values are given
by PREM to better constrain the SWD data at greater

depth.
Depth (km) Ve (kms™") VoV
0.0 3.5 1.8
15.0 4.0 1.8
115.0 4.0 1.81
350.0 4.65 1.81
PREM
371.0 4.75 1.863
400.0 4.77 1.867
471.0 5.14 1.848
571.0 543 1.843
600.0 5.52 1.840
670.0 5.57 1.843
771.0 6.24 1.774
871.0 6.31 1.781
971.0 6.38 1.789
1071.0 6.44 1.798

depth (aids efficiency) and also avoids biases in the results due to
the greater sensitivity depth of the SWD data. Alternatively, the
SWD data could be limited to shorter periods. However, due to the
integrating nature of surface waves as a function of depth, a clear
depth limitation is difficult to estimate and depends on the inversion
result.

For the joint inversions 48 computer cores were employed and
each core simulates from a Markov chain. Interactions between
chains are in terms of parallel tempering steps and samples are
recorded from 4 chains with 8 = 1 (see Appendix A). Fundamental-
mode dispersion curves are predicted by normal-mode summation
with the method of Saito (1988). The D, and D, components are
considered to have noise that is independent from that of the SWD
data. Hence, the likelihood function is defined by the product of
likelihoods for the two data types and an additional parameter is

required for the SWD error standard deviation. Note that no other
weights to scale the relative importance of RF and other data types
in the inversion are required in Bayesian inversion. The weight of
each data type is intrinsically given by its error standard deviation.
In particular, choosing a subjective weighting could substantially
change the results and hierarchical estimation such as applied here
should be preferred. Convergence of the posterior sampling was
judged by comparing the first and last quarter of the sampling history
in terms of marginal densities and chain histories for the logarithm
of the likelihood value and the model index & (see eq. Al).

Due to the short P arrival (Fig. 5), we set s to have an extent
of 8 s (N, = 40). Fig. 5 shows that the D, and D, components are
both well fit by the inversion and the STF estimate is mostly con-
strained by the vertical component. Since the fundamental source
assumption for this method is a plane P wave incident from below,
the P arrival is expected to dominate the D, component for the
ray parameters considered here. Fig. 7 shows marginal densities for
the standard deviations of D, and D, components. The standard
deviation is significantly larger for the D, component, suggesting
that some of the simplifications in the model (horizontal stratifi-
cation, isotropic) cause some theory error. In addition, note that
the standard deviations for D, and D, are approximately an order
of magnitude larger than the pre-event noise level (see Supporting
Information Fig. S4). Hence, theory error dominates for this inver-
sion and it is crucial to consider hierarchical estimation of noise
parameters to avoid over-fitting of the data. The fit of SWD data
(Fig. 6) is very close, resulting in low values for the SWD residual
standard deviation (Fig. 7). Such low residual estimates are likely
due to the SWD curve being inferred via regularized inversion
(Ekstrom 2011) rather than measured. However, these data are the
best currently available and provide important constraints for the
RF inversions.

The main inversion results are shown in Fig. 8 in terms of profile
probability densities for ¥ and V,/V,. The most prominent feature
in the V; density is the Moho, a strong discontinuity at 30 km depth
where V; jumps to ~4.55 km s~!. Above that is a layered crust
with a topmost layer of ¥, ~ 3.35 km s~! extending to 10 km
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Figure 7. The standard deviation of the three independent data sets considered in the inversion of (a) radial and (b) vertical waveforms, and (¢) SWD dispersion
data. Note that no subjective choice is required to weight the individual data types.
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Figure 8. Inversion results (colour) in terms of profile marginal densities
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depth. Between 10 and 30 km depth, the inversion results indicate
a gradient with increasing velocity towards the Moho. However,
it is possible that the crust has in fact a much simpler structure
(two layers above the Moho) and that the gradient is due to the
seismic data averaging over some depth (D, and D, due to band-
limited signal, and SWD due to intrinsic depth integration). The
inclusion of SWD data likely increases this averaging effect. Below
the Moho, V; is mostly around 4.55 km s~!, which closely agrees
with the results from joint RF (P and S) and teleseismic traveltime
residuals in Kiselev ez al. (2008).

The profile also exhibits strong discontinuities at 75 and 110 km
depth. In the layer between these depths V; increases to 4.8 km s™!.
Below 110 km depth, the structure returns to a value of ~4.55 km s ™!
until velocities decrease below 220 km. While the lithosphere-
asthenosphere boundary is not clearly resolved, these results suggest
that it likely occurs at depths below 220 km. Uncertainties at these
depths are also significantly larger than in the more shallow parts of
the profile, making inferences on structure more challenging. The
larger uncertainties with respect to interface positions and velocities
at these depths appear reasonable given the much smaller amplitudes
in the waveforms to constrain these features and the lower sensitiv-
ity in the SWD data. Hence, the approach produces uncertainties
that appear to be consistent with the type of data considered.

The results for the V), /¥, ratio are highly uncertain. Below 100 km
depth, the uncertainties comprise the full width of the prior bounds,
meaning that the data have virtually no information about ¥V, within
these bounds. At shallower depths, some sensitivity exists but the
uncertainties are still high and exhibit multiple modes. It is unlikely
that this is due to meaningful V), structure. Rather, the parameter
likely accounts for some of the theory error in the inversion which
results in unreasonable V,/V estimates. These results illustrates
that if V,, structure is of interest, it is desirable to include additional
data (e.g. shear wave RFs, teleseismic traveltime residuals) in joint
inversions to provide information about P velocities. In addition
to better constraining ¥, such additional data could also improve
constraints on V; by improving the V,/V; estimate. However, this
additional complication is not considered here and may also require
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Figure 9. Complexity of the trans-D model in terms of the number of layers
(top) and the number of parameters (bottom).

a more general model to reduce theory errors (e.g. by accounting
for potential anisotropy and/or dipping interfaces).

Fig. 9 shows a marginal distribution of the model index & (the
number of interfaces in the model). The distribution is fairly spread
out with significant probability from 10 to 30 interfaces. This means
that the uncertainty in terms of model choice (how many layers
should be included in the inversion) is high and emphasizes the
importance of using a trans-D model to analyse these data.

Bayesian parameter uncertainty estimates depend (potentially
strongly) on how well the prior assumptions about the noise are
met in the inversion. Fig. 10 considers residual error analysis to ex-
amine how well the assumptions used in the derivation of the likeli-
hood function eq. (6) are met. In particular, the derivation assumed
that data errors are Gaussian distributed and uncorrelated such that
the covariance matrix is represented by only a standard deviation.
Hence, the residual error should be both random (uncorrelated) and
Gaussian distributed to be consistent with the formulation in eq. (6).

Note that while the seismogram noise is directly accessible (pre-
event) it is often not a sufficient approximation of the residual errors
in an inversion. The residual errors are a combination of measure-
ment and theory errors, of which the theory errors are shown to
dominate in this case (Fig. 7 and Supporting Information Fig. S4).
While the pre-event noise is correlated, the magnitude of this noise
is ~10 times less than the residual errors in the inversion.

Randomness is examined here by comparing the density of auto-
covariance functions of the residuals for all models in the posterior
density to the autocovariance of a Gaussian pseudo random series.
To obtain the density, data predictions are computed for all sam-
ples in the posterior, which are used to produce a large sample of
residual errors. Then, the autocovariance function is computed for
each series of residuals in the sample. Finally, the autocovariance
functions are displayed in terms of their density as a function of
lag (Figs 10a—c). Note that the results for the R component do not
display any significant residual correlation (the main lobe of the
density closely resembles a delta function). For the D, component,
the central peak is also very narrow but some residual correlation
exists at larger lags (likely due to the later times in the waveform).
These correlations are not likely to have significant impacts on the
inversion results.

Similarly, histogram densities of standardized residuals (normal-
ized by the standard deviation for each sample) are computed for
the three data types and are compared to a Gaussian distribution
with zero mean and unit standard deviation (Figs 10d—f). The resid-
uals for both D, and D, components closely resemble a Gaussian
distribution, which increases the confidence in the inversion results.

The auto-covariances for the SWD residuals indicate the strongest
correlations. For this reason, the likelihood function for the SWD
data included an autoregressive (AR) error model (Dettmer ef al.
2012). However, given that the curve includes only 21 data, estima-
tion of any noise parameters is challenging. Hence, the inclusion
of the AR process had little effect on the inversion results. The
SWD residual histograms are also highly uncertain due to the small
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Figure 10. Residual analysis for HYB data in terms of autocovariance (a—c) and residual histogram (d—f) densities (colour) compared to simulated Gaussian
(zero mean, unit standard deviation) densities (dashed). For (a, d) radial and (b, e) vertical components, and (c, f) SWD data.

number of data. These results suggest that these SWD are not ideally
suited for Bayesian inversion but since no other data are available,
are still included in the inversion as they provide important infor-
mation in terms of absolute velocities. It is possible that the small
errors on the data (rooted in the approach used to infer the SWD
curve) result in underestimated uncertainties in the deeper part of
the profile (where the SWD data provide most of the information).

4.3 Comparison to receiver function inversion

This section presents RF inversion results for station HYB. The
purpose of this comparison is to examine what impact the differ-
ent formulation has on inversion results. Differences can be due
to the following points: First, tuning parameters that are required
for classic RF processing are problematic in uncertainty estimation
since the estimates do not contain the effects of uncertainty in those
tuning parameters. Second, the seismogram inversion treats the STF
as unknown and uncertain, resulting in rigorous (and likely larger)
uncertainty estimates. Third, avoiding deconvolution by noisy (ob-
served) waveforms results in more data errors that are less correlated
than filtered and deconvolved RF.

The RF was processed by applying water level deconvolution
(Ammon 1991) to the events selected in Section 4.2. The process-
ing for all events was performed with a water level of 0.005 and
a Gaussian filter width of 2.5 rad s~!. Both parameters were set
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Figure 11. Observed RF (dashed) and range of data predictions (colour) for
station HYB.

subjectively in a trial-and-error approach based on visual inspec-
tion of many waveforms. Nonetheless, many of the events used in
to generate the stacks in the previous section produced unstable
RF results. Therefore, before stacking, an additional selection step
(Tkalci¢ et al. 2006) based on the correlation coefficient at zero lag
was applied to obtain a reasonable RF stack (Fig. 11). The RFs con-
tributing to the final stack are required to have a 0.9 correlation with
at least 5 other waveforms in the stack (see Supporting Information
Fig. S3 for details on the selection process).

The inversion was carried out for a joint likelihood function that
includes RF and SWD data. The seismogram inversion in the pre-
vious sections requires no specification of a Gaussian pulse (and
hence avoids these parameters altogether) since predicted wave-
forms are based on the impulse responses convolved with the STF
estimate s (eq. 8). The delay time was set to be 0 s, so that data
predictions are relevant for the likelihood computation starting at
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Figure 12. Receiver function inversion results (colour) in terms of profile
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much smaller (unrealistic) uncertainties than for the DSI result in Fig. 8.
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Figure 13. Estimated standard deviation for the RF and SWD data.

the peak of the P arrival (0 s). Otherwise, the algorithm and prior are
identical to those applied in Section 4.2. The main inversion result
is shown in Fig. 12 in terms of profile densities for V; and V,/ V.
The crustal structure in these results is complicated and shows clear
signs of over-parametrization: V values of several layers jump back
and forth. This problem is likely exacerbated by the trans-D model.
The trans-D model estimates model complexity based on the hier-
archical noise estimate (Fig. 13). The lower such noise estimates,
the higher the model complexity. The problem in the RF is that the
highly processed waveforms exhibits little noise and the statistical
attributes of the noise are difficult to understand (it is not clear how
deconvolution, water level and filtering affect the noise characteris-
tics). Therefore, the noise is highly correlated and while estimating
correlated noise in hierarchical models is possible (Bodin et al.
2012; Dettmer et al. 2012; Kolb & Lekic 2014), such estimation
can be difficult and relies on model assumptions that may not be
met for observed data. Hence, the seismogram inversion from the
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Figure 14. Comparison of model complexity of the trans-D model for the
inversion with unknown STF (Section 4.2) and for the RF inversion (Sec-
tion 4.3). Note that the uncertainty in the number of layers is much lower for
the RF inversion. In addition, the RF inversion overestimates the number of
layers which results in unreasonably complex shallow structure.

Section 4.2 appears advantageous, since it avoids signal processing
steps that substantially change noise characteristics.

The problem of over-estimated complexity (i.e. over parametriza-
tion) is also visible when marginal distributions for the number of
interfaces are considered (Fig. 14). The k£ marginal for the inversion
with unknown STF is considerably wider than in the case of RF
inversion. In addition, for RF inversion, k peaks at a higher value
which suggest that the algorithm estimates higher complexity for
the RF data in contrast to the D, and D, data. However, these effects
are likely due to a lack in the ability to properly account for the
effects of signal processing on noise.

The results in Fig. 12 also show little increase in uncertainty as
a function of depth which is unlikely to be realistic. To compare
the uncertainties between the two approaches, Fig. 15 displays the
inversion parameters in terms of the density of layer nodes and per-
turbation values from the background profile (Table 2). A layer node
is considered to be located at the top interface of a layer and defines
the homogeneous region below until the next interface is encoun-
tered. To emphasize the difference in uncertainty (given the limited
dynamic range of the colour scale), the base 10 logarithm of the
density is displayed. The RF results have unreasonably small uncer-
tainties in both V; and V,,/V;. These under-estimated uncertainties
are likely due to the strong effects that signal processing (decon-
volution and filtering) has on the noise in the seismograms. Since
it is unclear how to account for such processing in the Bayesian
framework efficiently (treating signal processing parameters as un-
known appears to be computationally prohibitive today), rigorous
uncertainty estimation is not possible.

5 CONCLUSION

This work considered a new approach to Bayesian inversion for
receiver-side structure where the STF is treated as unknown. This
substantially simplifies the data processing as it does not require
any deconvolution or specification of tuning parameters. Rather,
seismogram components are directly inverted by formulating a joint
likelihood function for the seismogram components while assuming
the STF to be unknown. The unknown STF is here estimated by
a closed-form expression for the maximum likelihood STF given
a realisation of the parameter vector. This expression is obtained
by setting to zero the partial derivative of the likelihood function
with respect to the unknown source parameters. Importantly, this
approach accounts for the limited knowledge about the STF and
accounts for this in the inversion results (producing larger, more
realistic uncertainty estimates for ¥ profiles).
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Figure 15. Comparison of inversion results for (a) DSI and (b) RF inversion. Results are shown in terms of the logarithm (base 10) of the perturbation position
density. In (a), uncertainty increases with depth but the half-space is closely constrained due to the small errors on the long-period SWD data. In (b), uncertainty
estimates are unrealistically small due to signal processing effects on data noise and since the RF inversion does not treat the STF as uncertain.

Since the inversion works on time-domain stacked seismograms
and avoids filtering and deconvolution, the errors on the data are
much more straightforward to understand and produce more mean-
ingful results when used with trans-D inference. A significant issue
with Bayesian inference is that the inferred model parameter un-
certainty is closely linked to the noise on the data (which may
include significant theory error). When signal processing steps (de-
convolution, filtering) substantially change the noise characteristics,
Bayesian algorithms may produce unreasonable uncertainty results.
This problem is greatly exacerbated when the model parametriza-
tion is considered to be unknown as in trans-D models. We have
shown that classic RF inversion may produce misleading results and
that, in the examples considered here, the new approach produces
much more reasonable inferences.

A fundamental assumption of the likelihood derivation as pre-
sented in this work is that the noise on the vertical, radial and
transverse components is independent. This may not always be true
for components of the same receiver. In principle, the likelihood
function can be generalized to consider noise correlations between
receiver components by including an appropriate covariance matrix.
However, it may be more sensible to consider multiple receivers in
an array. Therefore, we note that the approach is general and is
straightforward to extend to any number and combination of seis-
mogram components. In addition, the application is not limited to
the inversion of receiver-side structure but can be potentially useful
in inversion methods that consider other seismic phase, such as ScP
or other phases that are sensitive to deep earth structure but require
accounting for unknown STFs.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Slowness-azimuth pairs for all M,, = 6 events from
1997 to 2007 at station HYB and those that were selected for this
study (red).

Figure S2. Seismograms for all chosen events (grey) after aligning
on the P arrival and sign reversing. The stacked waveform (red)
used in this study and one standard deviation bounds (green) are
also shown.

Figure S3. Receiver functions for (a) all chosen events from Fig. 1
(grey) and those used for stacking this study (black). (b) The RFs
used for stacking (grey) and The final stacked RF used in the inver-
sion (black).

Figure S4. Pre-event noise of time-stacked radial and vertical com-
ponents: The pre-event time series for (a) radial and (b) vertical
components and the auto covariance functions (c, d) indicate some
correlation. While the noise is correlated, the histograms in (e) and
(f) suggest it is reasonably Gaussian and agrees well with a the-
oretical Gaussian (dashed). Note that this noise does not include
any theory error due to limitations in the data prediction and/or
model parametrization. Importantly, the standard deviation of the
radial and vertical components is ~0.0025 and ~0.0042, respec-
tively. These standard deviations are approximately one order of
magnitude lower than the hierarchical estimates from the inversion,
showing that theory error is dominant. Therefore, it is not suffi-
cient to consider these noise esimates only. Rather, this work treats
the noise as unknown and infers noise parameters as part of the
inversion. (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/
gji/ggv375/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

APPENDIX A: BAYESIAN INFERENCE WITH TRANS-DIMENSIONAL MODELS

Bayesian methods estimate parameter values and uncertainties by quantifying the posterior probability density which combines prior
information (independent of the data) and data information (through the likelihood function) to specify the state of knowledge about the
parameters. For completeness, the following section briefly reviews the Bayesian formulation as presented in our previous work (Dettmer
et al. 2010, 2012, 2014). More complete treatment can be found elsewhere (MacKay 2003; Brooks et al. 2011). In particular, the following
considers the parametrization in terms of the number of earth layers to be unknown which we refer to as a trans-D model (Green 1995;
Malinverno 2002; Sambridge ef al. 2006; Bodin & Sambridge 2009; Agostinetti & Malinverno 2010; Minsley 2011; Dettmer & Dosso 2012).
Therefore, the inversion results account for the unknown parametrization in the posterior parameter and uncertainty estimates, which are
deemed to be a more appropriate representation of the data and prior information.

Let d be a random variable of N observed data and M, denote a group of models specifying particular choices of physical theory, model
parametrization and error statistics, where £ € K and K is a countable set. In this particular application, k£ will index the number of interfaces
in the parametrization. Let m; be a random variable of M, parameters representing a realisation of model M. Green (1995) shows that
Bayes’ rule can be written for a Bayesian hierarchical model to include parameter &

p(k)p(d|k, my) p(my |k)
> ver J P p(dIK', m),)p(m), |k')dm),

where p(k) is the prior over the K models considered. The state variables (k, m;) are of dimension M) + 1 and the state space is trans-D
and given by the union of all fixed-dimensional spaces in K, that is, [, _({k} x R¥%). A Markov chain that samples this state space can be
defined and converges to the trans-D posterior p(k, m;|d). Note that the posterior probability density p(k, m,|d) intrinsically addresses model
selection and typical inferences about expectations do not require the computation of normalizing constants [the denominator in eq. (A1)].

The conditional probability p(d|k, m;) in eq. (A1) describes the residual-error statistics, where residual errors are defined as the difference
of observed and predicted data. For observed (fixed) data, p(d|k, m;) is interpreted as the likelihood function L(x), where x = (k, m;) is the
parameter vector (seismic velocities, layering geometry, . . . ). The likelihood function quantifies how well data are fit by predictions and is a
crucial component in any Bayesian formulation. The derivation of the likelihood function is considered in detail in Section 3.

To obtain parameter and uncertainty inferences, the posterior density p(k, m|d) must be estimated via numerical integration (‘sampling’).
Due to the high dimension of the model space, care must be taken in choosing efficient algorithms for the sampling. Here Markov-chain
Monte Carlo (MCMC) sampling is applied with the Metropolis-Hastings-Green (MHG) algorithm (Brooks et al. 2011). The MHG algorithm

p(k, m|d) =

: (A1)
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simulates a Markov chain by proposing new states X' = (k’, mj,) of the chain based on the current state x and a proposal distribution g centred
on the current state. The proposed state is then accepted/rejected based on the acceptance probability

p(x) (L(x’))/’ 9(xx), J|]
P \ L /) g™ ]

where the annealing parameter § is used for sampling efficiency when the algorithm is implemented with many Markov chains in parallel.
Such parallel tempering can substantially increase sampling efficiency for trans-D models (Dettmer & Dosso 2012; Sambridge 2014).

o = min [1, (A2)

APPENDIX B: MAXIMUM LIKELIHOOD SOURCE-TIME FUNCTION ESTIMATE
To obtain eq. (8) from eq. (7) requires solving d¢/ds; = 0 for s. The misfit ¢ can be written (omitting terms that do not depend on s)

N

N, 2 N, 2
P(x) o Y ((Dv),» - Zsk(Ev(x))jk> / 20, + ((D,.)j - Zsk(E,.(x)),-k) / 207
k=1

Jj=1 k=1

N Ny N 2
= Z <(Dv)3 - Z(Db)j Zsk(Ev(X))jfk + <Zsk(Ev(X))jk) )/20’3
Jj=1

k=1 k=1
N N 2

+ (Dr)i—2(Dr),-2sk(E,(x)),-_k+(Zsk(mx))‘/_k) / 27. (B1)
k=1 k=1

First we consider the maximum likelihood estimate for jth source term (omitting o, o, and x for simplicity)

N N Ny
0=0¢/dsi = =2 (D);(E);1+2) (Z sk(Eu),-k) (Ev)ji

j=1 j=1 \k=1
N N Ny

—2Y (D)AE) -1 +2) (Z sk(Er),fk) (E))ji- (B2)
j=1 k=1

j=1 \k=

Rearranging gives

N N N Ny N Ns
D D)ED; 1+ Y (DIE) =) (Z sk(Ev),-k) B+ (Zsk(Er)M) (En)j1, (B3)

j=1 j=1 j=1 \k=1 j=1 \k=1

which holds forall / =1, ..., N and can be written more compact in terms of convolutions (including ¢, and o, explicitly again)
D,*E,Jo}+ D, *E.J6? =(s* E,)* E,Jo> + (s * E,)x E. [0, (B4)
which can be rearranged to give eq. (7) for s

D, * E,/0?+ D, * E,[0?
s = .
E,%xE,/Jo?+ E, xE, [0}

(B3)
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