OPEN ACCESS

Excitation energy distributions and statistical dissociation of C_{70}^{2+} prepared in collisions with F⁺ ions at 3 keV

To cite this article: R Brédy et al 2014 J. Phys.: Conf. Ser. 488 102012

View the article online for updates and enhancements.

Related content

- <u>Fragmentation of multicharged C₇₀^{q+}</u> prepared in collisions with F⁺ ions at 3 keV S Martin, R Brédy, C Ortéga et al.
- <u>Similarities in fragmentation dynamics of</u> <u>molecules under various perturbations</u> Bhas Bapat, R K Kushawaha, S Sunil Kumar et al.
- <u>Photon Stimulated Desorption of Positive</u> <u>lons from LiF</u> Tsuneo Yasue, Tetsuji Gotoh, Ayahiko Ichimiya et al.

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

This content was downloaded from IP address 86.248.56.150 on 04/02/2021 at 08:52

Excitation energy distributions and statistical dissociation of C_{70}^{2+} prepared in collisions with F⁺ ions at 3 keV

R. Brédy * ¹, C. Ortéga*, M. Ji*, L. Chen*, J. Bernard*, G. Montagne*, D. Qian[†], B. Li[†], X. Ma[†] and S. Martin*

^{*} Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France [†] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China

Synopsis The statistical dissociation of C_{70}^{2+} has been studied as a function of the internal energy using collision induced dissociation under energy control (CIDEC). Doubly charged ions C_{70}^{2+} were prepared in F^+ (3 keV) + $C_{70} \rightarrow F + C_{70}^{2+}$ collisions. Up to seven successive evaporation of C_2 have been observed in a time range of 1.7 μ s. The dissociation energies of C_{70-2m}²⁺ (m=1-7) were determined using a statistical cascade model to reproduce the excitation energy distribution of C₇₀²⁺ parent ions for each dissociation channel. Results are in good agreement with previous theoretical calculations.

The fragmentation pattern of C_{70}^{2+} is studied with well-controlled internal excitation energy in $F^+ + C_{70} \rightarrow F^- + C_{70}^{2+}$ collisions using the CIDEC method [1]. By analyzing the kinetic energy loss of the scattered negative ions F⁻, the internal energy distribution of the doubly charged C₇₀ parent ions has been obtained for the main dissociation channels, i.e., the successive evaporation of C2 units.

As expected, the dissociation of C_{70}^{2+} presents a statistical behavior. Indeed, for the first C₂ emission the average excitation energy of the C_{70}^{2+} parent ion is about 53 eV which is much larger than the dissociation energy (9.5 eV). For the second and third evaporations, an extra amount of energy of about 8 and 16 eV is required, respectively. In the time range of the experiment (1.7 μ s) up to seven C₂ evaporation have been observed leading to C_{56}^{2+} daughter ion (figure 1). The corresponding internal energy of the C_{70}^{2+} parent ion is about 100 eV. It is noteworthy that the C_{60}^{2+} daughter ion appears at excitation energy of about 81 eV. An extra 8.5 eV leads to the formation of C_{58}^{2+} fragment. From previous experiment [1] the internal energy of the C_{60}^{2+} parent ions was measured to be about 45 eV for the emission of the first C₂ unit. This tends to indicate that C_{60}^{2+} ions formed from C_{70}^{2+} parent ion may have a rather high excitation energy.

Using the Arrhenius law to calculate the rates, the internal dissociation energy distributions were reproduced with a cascade statistical model without any assumption on the excitation energy. The obtained dissociation energy of C_{70-2m}^{2+} (m=1-7), treated as free

parameters in the model, are found in good agreement with previous calculations [2].

The ionization process of C_{70}^{2+} in competition with the C2 evaporation channel will also be discussed.

Figure 1. Symbols: experimental internal energy distributions of C_{70}^{2+} parent ions for successive C_2 evaporations. The amplitude of the C_{70}^{2+} peak has been divided by a factor 25 and the dash line is to guide the eyes. Plain lines: Gaussian fits of the energy distributions of $C_{70}{}^{2+}$ parent ions leading to C_{70-2m}^{2+} (m=1-7) daughter ions.

References

[1] Chen L, Martin S, Bernard J and Brédy R 2007 Phys. Rev. Lett. 98 193401

[2] Díaz-Tendero S et al. 2006 Int. J. Mass. Spectrom. 252 133

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{t}})$ (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

¹E-mail: richard.bredy@univ-lyon1.fr