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Comment on “Towards Direct-Gap Silicon Phases
by the Inverse Band Structure Design Approach”

In the Letter of Xiang et al. [1], a novel, metastable cubic
silicon phase Si20-T was theoretically predicted by the
modified particle swarm optimization method CALYPSO
[2]. The optical absorption of this phase was computed and
compared to that of diamond silicon. Si20-T exhibits a
quasidirect gap of 1.55 eV and has a stronger absorption in
the visible compared to diamond silicon, which makes it a
candidate as a solar energy absorber. However, we have
strong reasons to believe that this phase cannot be exper-
imentally synthesized via strong compression or decom-
pression or through molecular encapsulation as proposed
by the authors [3].
According to our density functional theory calculations

with the Perdew-Burke-Ernzerhof functional, and in agree-
ment with the data reported in Ref. [1], the energy
differences at ambient conditions of Si20-T with respect
to diamond silicon and to the type II silicon clathrate are
286 and 233 meV=Si, respectively. In fact, Botti et al. [4]
predicted a plethora of energetically much more favorable
silicon polymorphs, some of which are equally well suited
for photovoltaic applications, by employing the minima
hopping method [5,6]. In view of that, even in the unlikely
case that Si20-T could be synthesized, its stability is highly
questionable since it would quickly and highly exothermi-
cally decay to some more favorable metastructure, such as
those of Ref. [4].
Furthermore, the configurational density of states

increases with energy and essentially explodes [7] when
amorphous silicon becomes accessible at roughly
290 meV=Si above silicon diamond [8]. A huge number
of structures therefore compete thermodynamically with
Si20-T such that a crystallization in this phase is very
unlikely. To address the above issues, Botti et al. [4]
systematically rejected all phases with higher energies than
150 meV=Si above diamond silicon.
Although compression or expansion of silicon is a valid

and promising approach to synthesize novel silicon poly-
morphs, we are convinced that this approach is not
applicable to obtain Si20-T. Xiang et al. [1] conclude that
Si20-T can be synthesized at cell volumes below
15.6 Å3=Si or above 37.0 Å3=Si by boldly comparing
its energy=atom curve as a function of volume=atom with
respect to diamond silicon alone, ignoring all other lower-
energy metastable polymorphs. This complete neglect of
the complex phase diagram of silicon, which undergoes
several phase transitions as a function of pressure, is the
origin of their erroneous conclusions. The energies of the
various silicon phases as a function of atomic volume are
shown in Fig. 1. With the full phase diagram in mind, we
can clearly see that the β-tin phase is by far energetically

favored over Si20-T at 16 Å3=Si (170 meV=Si), while
silicon clathrates are favored in the high volume range
(156 meV=Si at 37.0 Å3=Si). Note that at this high volume,
which corresponds to a negative pressure of -1.8 GPa, our
calculations show that Si20-T silicon is dynamically unsta-
ble, making it therefore irrelevant to propose the synthesis
beyond 37.0 Å3=Si.
Xiang et al. [1] also proposed molecular encapsulation to

synthesize Si20-T with intercalated CH4. Again, the authors
neglected the energetically more favorable silicon clath-
rates in their comparison. By inserting CH4 in the clath-
rate’s polyhedra the cell volume expands by merely 1.6%,
compared to 8.3% volume expansion in Si20-T, resulting in
a significantly stronger strained structure. Therefore it is
not surprising that, according to our calculations, the
clathrate with encapsulated CH4 is favored by 458 meV=Si.
In conclusion, optimizing a single physical property

alone when designing novel functional materials is by no
means sufficient to predict promising structures, but a
rigorous study of the thermodynamic stability is essential
when evaluating their synthesizablity.
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FIG. 1 (color online). Energy=atom as function of volume/atom
for the structures in Ref. [4], together with Si20-T.
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