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We assess the validity of various exchange-correlation functionals for computing the structural, vibrational,
dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation
theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC,
AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety
of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO2 α-quartz and
stishovite, ZrSiO4 zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are
the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve
over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for α-quartz. For the vibrational
and thermodynamical properties, LDA performs surprisingly very well. In the majority of the test cases, it
outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin
(and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational
quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce
the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the
oscillator strengths (and hence the static dielectric constant).

DOI: 10.1103/PhysRevB.89.064305 PACS number(s): 63.20.dk, 71.15.Mb

I. INTRODUCTION

The lattice-dynamical behavior (“the jiggling and wiggling
of atoms,” as Feynman poetically said [1]) determines many of
the physical properties of solids: infrared, Raman, and neutron-
diffraction spectra; specific heats, thermal expansion, and
heat conduction; phenomena related to the electron-phonon
interaction such as the resistivity of metals, superconductivity,
the temperature dependence of optical spectra, etc. It is thus
essential to be able to model accurately the lattice dynamics of
materials to understand and predict many of their properties.

In the last three decades, theoretical condensed-matter
physics and computational materials science have made con-
siderable progress. Nowadays, many materials properties can
be computed using ab initio quantum-mechanical techniques.
Their only input information is the chemical composition
and crystal structure of the material. The predictive power
of ab initio computations has even started to be used to
make materials design and predictions [2]. In the specific
case of lattice-dynamical properties, a large number of ab
initio calculations based on the linear-response theory of lattice
vibrations have been made possible over the past twenty years
by the achievements of density-functional theory [3] (DFT)
and by the development of density-functional perturbation
theory [4] (DFPT). Thanks to these theoretical and algorithmic
advances, it is nowadays possible to obtain phonon dispersions
on a fine grid of wave vectors covering the entire Brillouin

zone, which can directly be compared with neutron-diffraction
data. From the phonon frequencies, many of the above physical
properties can be computed.

Within the framework of DFT, the many-body problem of
interacting electrons in a static external potential is cast into a
tractable problem of noninteracting electrons moving in an ef-
fective potential. The latter includes the external potential and
the effects of the Coulomb interactions between the electrons,
i.e., the so-called Hartree term, describing the electron-electron
repulsion, and the exchange and correlation (XC) interactions,
which includes all the many-body interactions. Modeling the
XC interactions is the main difficulty of DFT. The simplest
approximation is the local-density approximation [3,5] (LDA),
which is based on the XC energy of the homogeneous electron
gas and only requires the density at each point in space. A
slightly more elaborate approach consists in using both the
density and its gradient at each point in space in the so-called
generalized gradient approximation (GGA).

For solids, the most commonly used GGA functional is
the one proposed by Perdew, Burke, and Ernzherhof (PBE)
[6]. It almost always overestimates the lattice constants of
solids, while LDA consistently underestimates the volume.
In both cases, the typical errors amount to 1%–2% of the
lattice parameters. A series of alternative GGA functionals
have recently been proposed to overcome this problem, as
well as to obtain accurate surface energies for solids. One
such functional is the AM05 functional [7], which combines
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the LDA functional for bulklike regions with a local Airy
approximation [8] for surfacelike regions. In contrast, the
PBEsol [9] and Wu and Cohen (WC) [10] functionals can
be seen as revised versions of PBE specifically adapted for
solids. These three functionals (AM05, PBEsol, and WC)
yield indeed lattice constants that are in excellent agreement
with experiments [11]. More recently, the HTBS functional
[12] has been proposed as an efficient compromise leading to
good results on challenging problems requiring accuracy for
both solids and molecules (e.g., the CO adsorption on noble
metal surfaces). It is obtained by mixing two functionals: one
performing well for atomization energies of molecules (the
RPBE [13] functional) and one achieving very good accuracy
for lattice constants in solids (WC).

These alternative functionals, which mainly focus on
improving the modeling of the lattice constants, bond lengths
and surface energies of solids, often compromise the accuracy
for bulk total energies. It is therefore of interest to study
how they perform when it comes to predicting properties
governed by lattice dynamics (such as phonon frequencies,
dielectric constants, and thermal properties) and that should
be affected by both the accuracy in structural parameters and
energy. It should be mentioned that the performance of PBE
has already been tested for the phonon frequencies of a few
selected solids [14–16]. A comparison of LDA, PBE, and
an ad hoc functional (mixing 50% of the previous ones) has
been proposed for copper focusing on the theoretical Debye-
Waller factors [18]. The performance of the screened hybrid
HSE functional has been studied for the lattice dynamics of
group-IV elemental semiconductors and insulators using a
finite differences approach [17]. More recently, the phonon
dispersions of face-centered cubic metals (Cu, Ag, Au, Ni, Pd,
Pt, Rh, and Ir) have also been investigated using the WC and
PBEsol functionals [19].

In this paper, we consider five GGA functionals (PBE,
PBEsol, WC, AM05, and HTBS) as well as the LDA to
compute such properties using DFPT. We investigate a wide
variety of materials including a semiconductor (silicon), a
metal (copper), and various insulators (SiO2 α-quartz and
stishovite, ZrSiO4 zircon, and MgO periclase). This allows
us to assess the validity of the different XC functionals
not only for structural properties (as commonly reported in
the literature) but also for vibrational, thermodynamical, and
dielectric properties.

This paper is organized as follows. Section II is devoted
to the technical details of our calculations. Our main results
are then presented in Sec. III: we present successively (III A)
the structural properties, (III B) the phonon frequencies at
�, (III C) the phonon dispersion curves, (III D) the volume
dependence of the phonon frequencies, (III E) the thermody-
namical properties, and (III F) the dielectric properties. Based
on these results, a few general statements and considerations
are given in Sec. IV. Finally, our most important findings are
summarized in Sec. V.

II. TECHNICAL DETAILS

The ab initio calculations were performed using the ABINIT

package [20] combined with the LIBXC library [21]. Total
energies were computed using DFT, and phonon frequencies

TABLE I. Atomic valence configurations, core radii (rc in a.u.
for the different channels), and local channel (see text) of the
pseudopotentials.

Atom Configuration rs
c rp

c rd
c Local

O 2s22p4 1.50 1.50 – p

Mg 3s23p03d0 2.10 2.50 2.50 s

Si 3s23p23d0 1.73 1.90 2.03 d

Zr 4s24p64d25s0 1.95 1.75 1.90 d

Cu 3d104s14p0 2.08 2.08 2.08 s

using DFPT. The exchange-correlation energy is evaluated
within LDA using Perdew-Wang’s parametrization [5] and
GGA using the PBE [6], PBEsol [9], AM05 [7], WC [10],
and HTBS [12] functionals. The interaction between the ions
and valence electrons was described using Troullier-Martins
norm-conserving pseudopotentials. These are generated by the
atomic pseudopotentials engine [22] consistently with each
XC functional. The reference configurations and core radii of
our pseudopotentials (kept the same for all XC functionals)
are reported in Table I. The plane-wave kinetic energy cutoff
was set to 10 Ha for silicon, 30 Ha for zircon, α-quartz, and
stishovite, 40 Ha for copper, 33 Ha for periclase. The Brillouin
Zone (BZ) integrations were performed within Monkhorst-
Pack (MP) scheme using 4 × 4 × 4 grids for silicon, zircon,
α-quartz, stishovite, periclase and using 6 × 6 × 6 grids for
copper. In order to deal with the possible convergence prob-
lems for copper, Gaussian smearing technique was employed
with the smearing parameter set equal to 0.01 Hartree.

For a statistical analysis of the results obtained with the
different XC functionals, we use the mean relative error (MRE,
in percents) and the mean absolute relative error (MARE, in
percents).

III. RESULTS AND ANALYSIS

A. Structural properties

We have studied in Table II the structural parameters
(lattice constants but also bond lengths and angles) for the
different compounds and functionals. The space group of
silicon is Fd3̄m. The Si atoms are located at ( 1

8 , 1
8 , 1

8 ) and
( 7

8 , 7
8 , 7

8 ) occupied the 8a Wyckoff sites [29]. In Table II, the
optimal lattice constant of silicon calculated using different XC
functionals are summarized and compared to the experimental
value 5.431 Å [23].

The unit cell of α-quartz is trigonal (space group P 3221). It
contains nine atoms: the Si atoms are located at (u,0,0) on the
3a Wyckoff sites, while the O atoms are located at (x,y,z) on
the 6c Wyckoff sites. Hence, four internal coordinates u, x, y, z
are required, besides the two lattice constants a and c, in order
to completely determine the structure. The theoretical value
calculated here using the different XC functionals are reported
in Table II. A comparison with the experimental values of
Ref. [24] is also provided.

Stishovite has the rutile structure which is tetragonal (space
group P 42/mnm). The positions of the Si atoms are imposed
by symmetry: they occupy the 2a Wyckoff sites located at
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TABLE II. Calculated structural parameters of silicon, α-quartz, stishovite, zircon, periclase, and copper for various XC functionals. The
theoretical results are compared to the experimental values taken from Ref. [23] for silicon, Ref. [24] for α-quartz, Ref. [25] for stishovite,
Ref. [26] for zircon, Ref. [27] for periclase, and Ref. [28] for copper. The lattice constants (a and c) and the bond lengths (d) are expressed in
Å, the bond angles are reported in degrees, whereas the internal parameters (u, v, x, y, and z) are dimensionless. The “good” (absolute relative
error smaller than 0.5%) theoretical values are in bold and the “bad” (absolute relative error larger than 2%) values are underlined.

LDA PBE PBEsol AM05 WC HTBS Expt. LDA PBE PBEsol AM05 WC HTBS Expt.
Silicon

a 5.382 5.467 5.422 5.431 5.420 5.446 5.431 d(Si-Si) 2.331 2.367 2.348 2.352 2.347 2.358 2.352
α-Quartz

a 4.866 5.039 4.959 5.029 4.975 5.108 4.916 d(Si-O) 1.600 1.624 1.614 1.614 1.613 1.620 1.605
c 5.361 5.524 5.443 5.510 5.458 5.579 5.406 1.605 1.627 1.618 1.617 1.616 1.620 1.614
u 0.4666 0.4790 0.4725 0.4818 0.4748 0.5000 0.4697 ∠(Si-O-Si) 142.2 148.1 144.9 149.6 146.1 154.3 143.8
x 0.4128 0.4155 0.4140 0.4166 0.4149 0.4186 0.4135 ∠(O-Si-O) 108.5 109.4 109.0 109.5 109.1 110.0 108.8
y 0.2726 0.2511 0.2628 0.2458 0.2587 0.2093 0.2669 109.3 108.2 108.6 108.3 108.6 108.2 109.0
z 0.1153 0.1320 0.1225 0.1366 0.1259 0.1667 0.1191 109.4 108.9 109.2 108.9 109.2 108.2 109.2

110.6 110.5 110.5 110.4 110.4 110.3 110.5
Stishovite

a 4.155 4.246 4.199 4.206 4.198 4.217 4.180 d(Si-O) 1.753 1.777 1.765 1.765 1.765 1.771 1.758
c 2.654 2.694 2.676 2.675 2.676 2.685 2.667 1.792 1.844 1.818 1.822 1.818 1.827 1.810
u 0.3057 0.3070 0.3062 0.3064 0.3062 0.3060 0.3062 ∠(Si-O-Si) 98.4 98.6 98.6 98.5 98.6 98.6 98.7

130.8 130.7 130.7 130.7 130.7 130.7 130.7
Zircon

a 6.575 6.697 6.631 6.642 6.629 6.661 6.610 d(Zr-O) 2.120 2.162 2.138 2.143 2.138 2.148 2.124
c 5.900 6.007 5.949 5.956 5.949 5.972 6.001 2.252 2.288 2.268 2.267 2.270 2.272 2.287
u 0.0661 0.0666 0.0662 0.0664 0.0662 0.0663 0.0646 d(Si-O) 1.612 1.639 1.627 1.628 1.626 1.633 1.627
v 0.1953 0.1951 0.1949 0.1947 0.1951 0.1945 0.1967 ∠(Zr-O-Si) 98.9 99.0 99.0 98.9 99.0 98.9 98.7

150.0 149.8 149.8 149.7 149.9 149.7 150.6
∠(Zr-O-Zr) 111.1 111.2 111.2 111.3 111.2 111.4 110.7
∠(O-Si-O) 97.2 97.1 97.1 97.0 97.1 97.0 97.8

115.9 116.0 116.0 116.0 116.0 116.0 115.6
Periclase

a 4.130 4.231 4.194 4.194 4.192 4.238 4.212 d(Mg-O) 2.065 2.115 2.097 2.097 2.096 2.119 2.106
Copper

a 3.522 3.661 3.596 3.595 3.599 3.599 3.615 d(Cu-Cu) 2.512 2.589 2.543 2.542 2.545 2.545 2.556
MRE (%) −0.79 1.31 0.27 0.99 0.43 2.31
MARE (%) 1.35 2.15 0.82 2.32 1.17 5.28

(0,0,0) and ( 1
2 , 1

2 , 1
2 ). The O atoms are located at (u,u,0),(1 −

u,1 − u,0),( 1
2 − u, 1

2 + u, 1
2 ), and ( 1

2 + u, 1
2 − u, 1

2 ) on the 4f

Wyckoff sites. The structure of stishovite is thus completely
defined by the lattice constants a and c and a single internal
coordinate u. In Table II, our calculated results are compared
with experimental values [25].

Zircon has a conventional unit cell which is body-centered
tetragonal (space group I41/amd). The positions of Zr and Si
atoms are imposed by symmetry: they are located at (0, 3

4 , 1
8 )

and (0, 1
4 , 3

8 ) on the 4a and 4b Wyckoff sites, respectively.
The O atoms occupy the 16h Wyckoff sites (0,u,v), where u

and v are internal parameters. Hence the structure of zircon is
completely determined by the two lattice constants a and c and
the two internal coordinates u and v. Table II summarizes our
theoretical results for zircon together with the measurements
of Ref. [26].

The space group of periclase is Fm3̄m. The O atom
occupies the 4a Wyckoff site (0,0,0) and the Mg atom is
located at ( 1

2 , 1
2 , 1

2 ) occupying the 4b Wyckoff sites. In Table II,
the optimal lattice constant of periclase calculated using
different XC functionals are summarized and compared to the
experimental value 4.21 Å [27]. The space group of copper
is Fm3̄m. The Cu atom is located at (0,0,0) occupied the 4a

Wyckoff sites. The equilibrium lattice constants for copper are
summarized in Table II.

A completely fair comparison between theoretical and
experimental values is quite difficult to achieve. Indeed, in
principle, the zero-point anharmonic expansion (ZPAE) should
be taken into account. When comparing the performance of
different XC functionals to predict the lattice constants of
solids, a ZPAE correction is usually applied to the experimental
results (see, e.g., Ref. [11]), leading to values typically 0.01–
0.02 Å lower. However, while a ZPAE correction formula
exists for cubic systems without any internal parameters, it is
unfortunately not the case for all crystalline systems and, in
particular, when internal parameters are involved. Therefore
we decided not to apply such corrections in order to treat
all the materials in the same way. Furthermore, for those
materials (silicon, periclase, and copper) to which ZPAE
corrections can be applied, we checked that the global trends
discussed hereafter are essentially very similar whether or not
the experimental results are corrected.

In Table II, we observe the well known general tendency of
LDA and PBE to respectively underestimate and overestimate
lattice constants. PBEsol and WC are the closest to the
experimental lattice parameters. AM05 performs only slightly
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FIG. 1. (Color online) Energy for various quartz structures along
the path from α- to β-quartz for the different XC functionals: LDA in
solid black with circles, PBE in solid red (gray) with circles, PBEsol in
dashed black with squares, AM05 in dashed red (gray) with squares,
WC in dotted black with triangles, and HTBS in dotted red (gray)
with triangles. HTBS fails to predict α-quartz as the stable phase.

worse than these functionals because of its larger errors for
the α-quartz lattice parameter. These results are in agreement
with a larger data set showing that WC, PBEsol, and AM05
perform similarly and better than LDA and PBE for lattice
constants [11]. On the other hand, the HTBS functional is
not performing better than LDA and PBE, and definitely
does not reach the accuracy of the WC functional. The most
dramatic failure of HTBS happens with α-quartz which cannot
be stabilized and relaxes to β-quartz (or high quartz).

The latter is the stable polymorph of silica at higher
temperature: at normal pressures, silica undergoes a structural
transition from α- to β-quartz above ∼500 ◦C. In fact, these
two forms of quartz are very similar, the relative positions of
the atoms being only slightly shifted. The Si (respectively, O)
atoms move from the 3a (respectively, 6c) and Wyckoff sites
located at (u,0,0) [respectively, (x,y,z)] in the α phase to the 3c
(respectively, 6i) Wyckoff sites located at ( 1

2 ,0,0) [respectively,
(2y,y, 1

6 )] in the β phase. The number of internal coordinates
is thus reduced from four (u, x, y, z) to one (y). The α- to
β-quartz transition is displacive: the nearest neighbors of each
atom remain the same, without breaking any of the chemical
bonds. The relative positions of the atoms within the SiO4

tetrahedra remain almost identical and the tetrahedra are not
distorted very much. Instead, the SiO4 tetrahedra get slightly
twisted in a way that causes the unit cell, which is trigonal
(space group P 3221) in α-quartz to become hexagonal (space
group P 6222) in β-quartz.

In Fig. 1, we report the energy for various quartz structures
(obtained by a linear interpolation of the internal coordinates
and the lattice constants) along the path from α- to β-quartz for
the different XC functionals. The α-quartz is found to be the
stable phase with all functionals but HTBS, while β-quartz is
a local minimum. With the HTBS functional, it is the β-quartz
phase, which is stable, while the α-quartz phase is unstable.

We would like to point out that most of the studies
evaluating the new GGA functionals [11] were carried out
on highly-symmetric solids with few structural degrees of
freedom (often only one lattice constant). The failure of HTBS

TABLE III. Fundamental frequencies of silicon (in cm−1) with
their symmetry assignments. The experimental values are taken from
Ref. [31].

Mode LDA PBE PBEsol AM05 WC HTBS Expt.

T1u 514 502 509 508 509 506 506
MRE (%) 1.53 −0.80 0.54 0.58 0.37 0.05

for α-quartz shows that more complex structures (with internal
parameters) should also be used to assess the performance of
XC functionals in modeling structural parameters.

B. Phonon frequencies at the � point

We first compute the phonon frequencies at the � point of
the Brillouin zone for all the materials using the different XC
functionals. The calculations are performed using the corre-
sponding theoretical equilibrium geometry (lattice parameters
and internal coordinates) rather than the experimental one. As
discussed by Baroni et al. [4], this is the most consistent choice
when comparing with experimental data at low temperature.
Furthermore, our aim is to evaluate the performance of the
different XC functionals for predicting properties governed by
lattice dynamics and it is more sensible to do so assuming that
the experimental geometry is unknown. Indeed, when this is
the case, it is mandatory to choose the theoretical equilibrium
geometry for further calculations. Given the possible effects
of the ZPAE and of the chosen pseudopotentials on the
equilibrium geometry, conclusions should be drawn very
carefully when comparing the different XC functionals. That
is what we have tried to do in the following. Note that, due to
the weak volume dependence of the Grüneisen parameter, it
is straightforward to relate results at the equilibrium geometry
with those, e.g., at the experimental geometry. This will be
discussed in more detail in Sec. III D below.

In α-quartz, stishovite, zircon, and periclase, the nonvanish-
ing components of the Born effective charge tensors [30] make
it necessary to properly include the dipole-dipole interaction in
the calculation of the interatomic force constants. In particular,
the dipole-dipole contribution is found to be responsible for
the splitting between the longitudinal and transverse optic (LO
and TO, respectively) modes Eu (perpendicular to c) and Au

or A2u (parallel to c).
For silicon, the following irreducible representations of

optical and acoustical zone-center modes can be obtained from
group theory:

� = T1u︸︷︷︸
Raman

⊕ T1u︸︷︷︸
Acoustic

.

Our results for silicon are reported in Table III and compared
with experimental data [31].

They are in line with the conclusions of Ref. [14] regarding
the evolution of the phonon frequencies with the lattice con-
stant. LDA (respectively, PBE) underestimates (overestimates)
the lattice constants and overestimates (respectively, under-
estimates) the phonon frequency. The other XC functionals
produce lattice constants and phonon frequencies in excellent
agreement with experiment. In fact, the results are very good
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TABLE IV. Fundamental frequencies of α-quartz (in cm−1)
with their symmetry assignments. The experimental values are
extrapolated from the temperature-dependent values provided by
Ref. [32] (for the six highest E modes and the A2 modes) and
by Ref. [33] (two lowest E modes and the A1 modes) using a
ω(T ) = ω0 + aT 1.8 law as advocated in the latter paper. The “good”
(absolute relative error smaller than 2%) theoretical values are in
bold and the “bad” (absolute relative error larger than 5%) values are
underlined.

Mode LDA PBE PBEsol AM05 WC HTBS Expt.

Raman
A1(1) 215 146 182 129 170 29 219
A1(2) 344 343 341 346 344 352 358
A1(3) 454 429 438 429 437 423 469
A1(4) 1069 1043 1055 1062 1058 1063 1082

Infrared
A2(TO1) 351 358 350 366 355 396 361
A2(LO1) 374 377 372 383 376 396 385
A2(TO2) 486 451 467 447 464 410 499
A2(LO2) 540 514 523 513 523 496 553
A2(TO3) 764 742 752 752 753 751 778
A2(LO3) 781 748 762 756 761 751 791
A2(TO4) 1063 1029 1044 1049 1047 1047 1072
A2(LO4) 1226 1196 1207 1215 1211 1215 1230
Eu(TO1) 129 113 119 110 117 105 133
Eu(LO1) 129 113 119 110 117 105 133
Eu(TO2) 258 247 250 245 249 243 269
Eu(LO2) 259 247 251 246 250 243 269
Eu(TO3) 381 377 376 379 378 384 394
Eu(LO3) 391 383 384 385 386 384 402
Eu(TO4) 441 416 425 415 425 401 453
Eu(LO4) 498 477 483 478 484 470 512
Eu(TO5) 685 654 667 660 666 652 698
Eu(LO5) 688 655 669 661 668 652 701
Eu(TO6) 786 751 767 759 766 750 799
Eu(LO6) 799 763 779 771 778 762 812
Eu(TO7) 1054 1025 1038 1044 1041 1044 1066
Eu(LO7) 1217 1188 1200 1207 1204 1209 1227
Eu(TO8) 1140 1126 1130 1144 1136 1152 1158
Eu(LO8) 1137 1125 1128 1143 1134 1152 1155

MRE (%) −2.22 −6.92 −5.10 −6.61 −5.23 −8.79
MARE (%) 2.22 6.92 5.10 6.71 5.23 9.68

(absolute relative error smaller than 2%) for all the XC
functionals including LDA and PBE. Thus this system is not
really meaningful on its own to discriminate among them.

For α-quartz, the theoretical group analysis predicts the
following irreducible representations of optical and acoustical
zone-center modes:

� = 4A1 ⊕ 9E︸ ︷︷ ︸
Raman

⊕ 4A2 ⊕ 8E︸ ︷︷ ︸
IR

⊕ A2 ⊕ E︸ ︷︷ ︸
Acoustic

.

Table IV summarizes our results for α-quartz, and compares
with experimental results at 0 K [32,33]. Note that the results
for the HTBS functional refer to the β-quartz.

In contrast with silicon, it is not obvious to correlate
the performance for phonon frequencies with the structural
properties. However, the relative errors vary much more

TABLE V. Fundamental frequencies of stishovite (in cm−1) with
their symmetry assignments. The experimental values are taken from
Ref. [34] for the Raman modes and Ref. [35] for the infrared modes.
The “good” (absolute relative error smaller than 2%) theoretical
values are in bold and the “bad” (absolute relative error larger than
5%) values are underlined.

Mode LDA PBE PBEsol AM05 WC HTBS Expt.

Raman
A1g 748 715 734 732 732 727 751
B1g 220 222 218 220 218 219 234
B2g 945 902 923 920 924 916 964
Eg 578 552 565 564 564 560 586

Infrared
A2u(TO) 643 619 632 633 630 629 650
A2u(LO) 1047 1013 1028 1028 1028 1023 950
Eu(TO1) 465 422 445 444 446 441 470
Eu(LO1) 563 527 545 543 546 539 565
Eu(TO2) 577 529 555 550 555 548 580
Eu(LO2) 701 672 684 684 686 680 700
Eu(TO3) 819 791 804 805 803 800 820
Eu(LO3) 1032 989 1011 1009 1011 1004 1020

Silent
B1u(1) 383 367 374 374 374 372 –
B1u(2) 749 718 734 732 734 728 –
A2g 600 573 581 582 584 577 –

MRE (%) −0.11 −4.72 −2.48 −2.59 −2.49 −3.14
MARE (%) 2.03 5.82 3.85 3.95 3.86 4.42

significantly for the different XC functionals. LDA shows
the smallest relative errors, which are actually two to three
times smaller than for the other XC functionals. LDA, PBE,
PBEsol, and WC are found to systematically underestimate
the phonon frequencies. It is almost systematically the case
for AM05. HTBS leads to the worst results since they refer to
the β-quartz.

For stishovite, the following irreducible representations of
optical and acoustical zone-center modes can be obtained from
group theory:

� = A1g ⊕ B1g ⊕ B2g ⊕ Eg︸ ︷︷ ︸
Raman

⊕ A2u ⊕ 3Eu︸ ︷︷ ︸
IR

⊕ A2u ⊕ Eu︸ ︷︷ ︸
Acoustic

⊕ 2B1u ⊕ A2g︸ ︷︷ ︸
Silent

.

In Table V, we show the calculated and experimental val-
ues [34,35] for the frequency of each mode at the � point of
stishovite.

While PBEsol and WC provide the best structural proper-
ties, it is again LDA which leads to the smallest relative error
on the phonon frequencies. It is worth mentioning that all the
alternative GGA functionals (PBEsol, AM05, WC, and HTBS)
improve compared to PBE, PBEsol and WC providing the
best results (though worse than LDA). None of the functionals
present a systematic trend (under- or overestimation) in the
errors.

For zircon, the theoretical group analysis provides the
following irreducible representations of optical and acoustical
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TABLE VI. Fundamental frequencies of zircon (in cm−1) with
their symmetry assignments. The experimental values are taken from
Ref. [36]. The “good” (absolute relative error smaller than 2%)
theoretical values are in bold and the “bad” (absolute relative error
larger than 5%) values are underlined.

Mode LDA PBE PBEsol AM05 WC HTBS Expt.

Raman
A1g(1) 437 415 425 423 426 422 439
A1g(2) 960 920 940 936 941 933 974
B1g(1) 222 201 212 210 213 209 214
B1g(2) 388 368 378 375 379 375 393
B1g(3) 626 603 612 610 614 607 –
B1g(4) 1002 956 981 977 981 975 1008
B2g 256 256 253 256 254 254 266
Eg(1) 193 191 190 192 191 191 201
Eg(2) 224 213 218 218 218 217 225
Eg(3) 362 322 343 334 345 333 357
Eg(4) 535 521 525 527 526 524 547
Eg(5) 910 867 889 886 890 884 –

Infrared
A2u(TO1) 345 315 330 327 331 327 338
A2u(LO1) 471 449 460 459 460 457 480
A2u(TO2) 596 572 582 580 584 577 608
A2u(LO2) 640 611 624 621 626 618 647
A2u(TO3) 967 921 946 942 946 940 989
A2u(LO3) 1084 1039 1061 1059 1063 1055 1108
Eu(TO1) 279 252 267 263 268 262 287
Eu(LO1) 338 331 333 334 334 332 352
Eu(TO2) 376 355 365 362 366 361 389
Eu(LO2) 416 391 404 400 405 398 419
Eu(TO3) 422 413 414 415 416 413 430
Eu(LO3) 463 444 452 452 452 449 471
Eu(TO4) 856 813 836 832 836 830 885
Eu(LO4) 1017 972 994 990 996 987 1035

Silent
B1u 124 135 127 132 128 134 –
A2g 243 242 240 242 241 241 –
A1u 391 388 387 389 388 389 –
B2u(1) 562 541 551 550 551 547 –
B2u(2) 933 892 913 908 914 905 –

MRE (%) −1.49 −6.36 −4.08 −4.45 −3.84 −4.82
MARE (%) 2.09 6.36 4.08 4.45 3.84 4.82

zone-center modes:

� = 2A1g ⊕ 4B1g ⊕ B2g ⊕ 5Eg︸ ︷︷ ︸
Raman

⊕ 3A2u ⊕ 4Eu︸ ︷︷ ︸
IR

⊕ A2u ⊕ Eu︸ ︷︷ ︸
Acoustic

⊕ B1u ⊕ A2g ⊕ A1u ⊕ 2B2u︸ ︷︷ ︸
Silent

.

Table VI summarizes our results for zircon and compares
with experimental results [36]. The dipole-dipole contribution
is found to be responsible for the splitting between the
longitudinal optical (LO) and transverse optic (TO) modes
Eu and A2u at the � point.

As for stishovite, there is no clear correlation between the
performance with respect to the prediction of the structural
properties and the quality of the phonon frequencies. In the
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FIG. 2. (Color online) Relative error with respect to the experi-
mental frequencies of zircon for the different XC functionals: LDA
(black circles), PBE [red (gray) circles], PBEsol (black squares),
AM05 [red (gray) squares], WC (black triangles), and HTBS [red
(gray) triangles].

case of zircon, all the GGA functionals tend to underestimate
the phonon frequencies, whereas there is no systematic trend
for LDA. Once again, PBE is performing the worst, while
PBEsol and WC are the best GGAs. These conclusions are
clearly seen in Fig. 2, which shows the relative errors for each
phonon mode as a function of the experimental frequency. A
similar graph (not shown here for sake of brevity) is obtained
for both SiO2 phases (α-quartz and stishovite). It is also
interesting to note that all functionals tend to underestimate
the experimental data at high frequency.

For periclase, the following irreducible representations of
optical and acoustical zone-center modes can be obtained from
group theory:

� = T1u︸︷︷︸
IR

⊕ T1u︸︷︷︸
Acoustic

.

Table VII shows our results for periclase and experimental
values [37].

In periclase, the worst results are obtained with HTBS. LDA
and PBE perform slightly better (with a similar accuracy),
the best performances being obtained with PBEsol, WC, and
AM05 in contrast with the observations for the other oxides
(quartz, stishovite, and zircon). Note that the LDA system-
atically overestimates while all the GGAs underestimate the
phonon frequencies.

For copper, all the phonon frequencies at the � point are
zero. There are only three acoustic since there is one atom per

TABLE VII. Fundamental frequencies of periclase (in cm−1). The
experimental values are taken from Ref. [37]. The “good” (absolute
relative error smaller than 2%) theoretical values are in bold and the
“bad” (absolute relative error larger than 5%) values are underlined.

Mode LDA PBE PBEsol AM05 WC HTBS Expt.
Infrared
T1u(TO1) 420 373 391 390 391 370 396
T1u(LO1) 727 686 698 699 700 684 710
MRE (%) 4.23 −4.59 −1.48 −1.53 −1.34 −5.11
MARE (%) 4.23 4.59 1.48 1.53 1.34 5.11
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Silicon

FIG. 3. (Color online) Phonon band structure and density of states of silicon computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data from Refs. [31,38] are also reported as blue (black) circles.

unit cell. An analysis of the fundamental frequencies at other
selected points of the Brillouin zone will be given in Sec. III C.

Globally, LDA is the functional that performs the best
among all, while PBEsol and WC are the best among the
GGAs. The worst result is obtained with HTBS for the
A1(1) mode of quartz (29 cm−1 instead of 219 cm−1). This
tremendous error comes from the wrong prediction of the
stable structure with this functional (β- instead of α-quartz).
Even after the exclusion of the quartz data, the HTBS
functional still performs significantly worse than LDA, WC,
PBEsol, and AM05. Note also that there is no systematic trend
(under- or overestimation) in the relative errors obtained with
the different functionals.

C. Phonon-dispersion relations

We also compute the phonon band structure and density of
states (DOS) of the different materials using the different XC
functionals. Our results are presented in Figs. 3–8. Available
experimental data are also reported for comparison. The
agreement is qualitatively very good though some significant
discrepancies are present (especially at higher frequencies)
independently of the XC functional. Given the variations
existing in the experimental data and the typical error bars, it

did not seem meaningful to us to define a quantitative measure
of the agreement between theory and experiment in order to
discriminate between the different XC functionals.

For the oxides (α-quartz, stishovite, zircon, and periclase),
it is reasonable to say that the LDA seems to perform slightly
better than all the GGA functionals. In contrast, for copper,
LDA shows the largest discrepancies while PBE seems to
perform the best. This can also be seen in Table VIII where
the fundamental frequencies at selected points of the Brillouin
zone have been reported.

We would like to point out that our results for copper are
shifted up by 5%–7% compared to those of Ref. [19] in which
the WC and PBEsol frequencies match the experimental data
better than LDA or PBE. There are several differences between
the two calculations which may explain this discrepancy.
In Ref. [19], the phonon frequencies are computed at the
equilibrium lattice constant at T = 296 K, while we use the
one at T = 0. This probably accounts for 1%–2% difference,
as observed experimentally [47] and as discussed below.
Furthermore, the calculations of Ref. [19] are based on
the projector augmented wave (PAW) method, while ours
rely on the use of norm-conserving pseudopotentials. It is
interesting to point out that despite the equilibrium lattice
constants at T = 0 K are in excellent agreement (at most 0.5%

Quartz

FIG. 4. (Color online) Phonon band structure and density of states of quartz computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data from Refs. [39–41] are also reported as blue (black) circles.
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Stishovite

FIG. 5. (Color online) Phonon band structure and density of states of stishovite computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data from Ref. [42] are also reported as blue (black) circles.

Zircon

FIG. 6. (Color online) Phonon band structure and density of states of zircon computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data from Refs. [43–45] are also reported as blue (black) circles.

Periclase

FIG. 7. (Color online) Phonon band structure and density of states of periclase computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data from Ref. [37] are also reported as blue (black) circles.
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Copper

FIG. 8. (Color online) Phonon band structure and density of states of copper computed using the different XC functionals: LDA in solid
black, PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC in dotted black, and HTBS in dotted red (gray). The
experimental data (with error bars) from Ref. [46] are also reported as blue (black) circles.

discrepancy), the phonon frequencies may show important
differences. This emphasizes the importance of assessing the
accuracy of pseudopotentials by comparing with all-electron
results not only for structural but also for dynamical properties.

When looking at the phonon DOS in Figs. 3–8, it looks as if
it were simply shifted when changing the XC functional (with
LDA and PBE at the upper and lower ends and all the other
functionals falling in the middle almost on top of one another).
This is confirmed by computing the different moments of the
phonon DOS: the average frequency ω̄ (1st moment) is much
more dependent on the XC functional than all higher moments.
In Table IX, we show the average frequency ω̄ and the standard
deviation σ (second moment) extracted from the phonon DOS
computed at the theoretical lattice constant of the different
materials using the different XC functionals. Higher moments
(not reported for sake of brevity) do not vary much with the
XC functional.

D. Volume dependence of the phonon frequencies

The different XC functionals lead to different lattice con-
stants and the latter influence the computed frequency. Here,
we study the volume dependence of the average frequency (ω̄)
for the different XC functionals.

We can distinguish an indirect effect through the equi-
librium lattice constant from the direct effect (for a fixed
lattice constant). Indeed, the average frequency changes quite
strongly with the lattice constants as illustrated in Fig. 9 for
periclase and copper: an increase of the lattice constant by

TABLE VIII. Fundamental frequencies of copper (in cm−1) at
selected point of the Brillouin Zone with their symmetry assignments.
The experimental values are taken from Ref. [46]. The “good”
(absolute relative error smaller than 2%) theoretical values are in
bold and the “bad” (absolute relative error larger than 5%) values are
underlined.

Mode LDA PBE PBEsol AM05 WC HTBS Expt.

XT 186 168 180 183 178 176 169
XL 275 243 263 265 261 257 240
W� 184 162 177 179 175 173 163
W� 232 205 223 225 220 218 203
LT 123 110 119 121 117 117 112
LL 280 248 268 269 266 262 247
MRE (%) 12.50 −0.06 8.21 9.38 6.99 5.88
MARE (%) 12.50 0.94 8.21 9.38 6.99 5.88

0.2 Å can induce a decrease of ω̄ by 80–100 cm−1. In contrast,
the direct effect is rather small at most 15 cm−1 between the
two extreme results (produced by LDA and PBE). To illustrate
this point, let us consider periclase. In Table IX, we have
ω̄ = 413 cm−1 using LDA and 383 cm−1 using PBE. This
looks like a decrease by 30 cm−1. However, these values are
calculated for two different lattice constants a = 4.13 Å for
LDA and a = 4.23 Å for PBE. If the functional were changed
from LDA to PBE while keeping the LDA equilibrium lattice
constant, the average frequency would actually increase by
13 cm−1 (from 413 to 426 cm−1). This is the direct effect of the
XC functional. Whereas, the indirect effect (due to the change
from LDA to PBE equilibrium lattice constant) produces a
decrease by 43 cm−1.

The lattice (or volume) dependence of the average fre-
quency is measured by the corresponding Grüneisen parameter
γ = − d ln ω̄

d ln V
, which is also reported in Fig. 9. Interestingly

enough, all functionals produce very comparable Grüneisen
parameters. For periclase, γ � 1.47–1.57 is comparable to
the measured values ranging from 1.49 [48] to 1.60 [49]. For
copper, γ � 2.08–2.34 is in very good agreement with the
reported experimental value of γ � 2 [49–51] and previous
theoretical results [18]. This weak variation with the XC
functional might be exploited as follows. If the average
frequencies were known for various XC functionals at a given
lattice constant value, computing the volume dependence of
the frequency for just one of those functionals would be

TABLE IX. Average frequency (ω̄) and standard deviation (σ )
of the phonon density of states calculated at the theoretical lattice
constant for silicon, α-quartz, stishovite, zircon, periclase, and copper
for the different XC functionals. ω̄ and σ are expressed in cm−1.

LDA PBE PBEsol AM05 WC HTBS

Silicon ω̄ 330 324 327 327 326 325
σ 146 139 145 145 144 144

α-Quartz ω̄ 557 539 545 546 544 541
σ 359 352 356 357 360 361

Stishovite ω̄ 580 552 566 566 564 562
σ 207 201 204 204 204 203

Zircon ω̄ 480 458 468 470 467 465
σ 294 281 288 288 287 286

Periclase ω̄ 413 383 392 393 392 379
σ 118 113 114 114 114 112

Copper ω̄ 183 163 176 175 178 173
σ 55 49 53 52 53 52
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FIG. 9. (Color online) Variation of the average frequency ω̄ (in
cm−1) of (a) periclase and (b) copper as a function of the lattice
constant a (in Å) computed using the different XC functionals: LDA
in solid black, PBE in solid red (gray), PBEsol in dashed black, AM05
in dashed red (gray), WC in dotted black, and HTBS in dotted red
(gray). The vertical lines indicate the experimental lattice constant
taken from Refs. [27,28], and the two extreme PBE and LDA lattice
constants for periclase and copper, respectively.

sufficient to provide a reasonable extrapolation scheme for
ω̄(a) for any of the XC functionals.

E. Thermodynamical properties

The vibrational entropy of a solid can be obtained from
its phonon distribution. This quantity is of importance for
the ab initio assessment of solid phase stability. The entropy
S(T ) at temperature T is first computed within the harmonic
approximation [52] for the different materials in their equi-
librium structural configuration. In Table X, the entropy at
298 K calculated using the various XC functionals is compared
with the experimental measurements [53–55]. All the results
are in good agreement with experiments apart from those for
zircon [56]. We note that the LDA functional presents the best
results. AM05, PBEsol, and WC are the best among the GGAs,
while HTBS is the worst.

In any case, the absolute error on the contribution of the
vibrational entropic term to the free energy (TS) is around 2
to 3 meV/atom. This is much smaller than the typical errors
on the energy term [57,58].

TABLE X. Calculated entropy (in J/mol/K) at 298 K of silicon,
α-quartz, stishovite, zircon, periclase, and copper for various XC
functionals. The theoretical results are compared to the experimental
values taken from Refs. [53–55]. The “good” (absolute relative error
smaller than 3%) theoretical values are in bold and the “bad” (absolute
relative error larger than 5%) values are underlined.

LDA PBE PBEsol AM05 WC HTBS Expt.

Silicon
19.41 19.56 19.67 19.61 19.67 19.71 18.81a, 18.80b

α-Quartz
42.40 44.32 43.76 43.86 44.48 44.95 41.44a, 43.40b

Stishovite
24.56 26.84 25.72 25.66 25.81 26.03 24.94c

Zircon
90.15 94.86 92.77 92.38 93.20 93.41 84.50b

Periclase
25.71 28.59 27.59 27.52 27.63 28.96 26.95a, 26.90b

Copper
30.21 32.94 31.06 31.34 30.85 31.57 33.15a, 33.10b

−0.83 5.68 2.83 2.79 3.18 4.77 MRE (%)
4.52 5.87 4.90 4.58 5.47 6.34 MARE (%)

aReference [53].
bReference [54].
cReference [55].

In the following, we take periclase and copper as examples
to study how XC functionals impact other thermal properties.
First, the free energy F (a,T ) [F (V,T )] at temperature T

and lattice constant a [volume V ] are computed within the
quasiharmonic approximation [4]. By fitting the results for the
free energy to the third-order Birch-Murnaghan equation of
state [59], we can obtain the variation in temperature of the
equilibrium lattice constants a0(T ) [volumes V0(T )], the bulk
modulus B0, and the pressure derivative of the bulk modulus
B ′. The linear thermal expansion ε(T ) is then given by

ε(T ) = a0(T ) − a0(Tc)

a0(Tc)
,

where Tc = 298 K is the reference temperature. Finally, the
coefficient of linear thermal expansion is obtained as

α(T ) = 1

a0(Tc)

da0(T )

dT
.

Figures 10 and 11 show the results for (a) ε(T ) (expressed
as a percentage), (b) α(T ), and (c) B0(T ) using various XC
functionals.

For periclase, the anharmonic effects are very impor-
tant. Thus, empirical corrections are necessary to obtain
good thermodynamical properties over a wide temperature
range [67,68]. Here, we did not go through this special
procedure that would not allow to discriminate the different
XC functionals. So, the calculations of ε, α, and B0 were
limited to temperatures lower than 1000 K. Ideally, it would
be better to focus on even smaller temperatures but very few
data are available. At low temperature, LDA seems to produce
the best results. In contrast, like for the frequency at �, the
HTBS results fall outside the LDA-PBE range on the PBE
side, leading to the worst agreement with experiments.
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For copper, LDA (respectively, PBE) underestimates (re-
spectively, overestimates) the thermal expansion (ε and α)
while all the other GGAs show an excellent agreement
with the experimental results. For the bulk modulus, PBE
underestimates compared to the measured data, while all other
functionals overestimate. HTBS performs the best and LDA
is the worst with ∼5% and ∼20% discrepancy, respectively.
All other GGAs (including PBE) show an error of ∼7%–8%
compared to experiments.

F. Dielectric permittivity tensors

Finally, we turn to the calculation of the electronic (ε∞) and
static (ε0) permittivity tensors. The electronic (ion-clamped)
dielectric permittivity tensor is related to the second-order
derivatives of the energy with respect to the macroscopic
electric field. The static dielectric permittivity tensor also
includes the polarization coming from the ionic displacements.
It is obtained by adding the contributions of different modes
to ε∞ as follows:

ε0
αβ = ε∞

αβ +
∑
m

�εm,αβ

= ε∞
αβ + 4π

�0

∑
m

Sm,αβ

ω2
m

, (1)

where �0 is the volume of the primitive unit cell and Sm,αβ is
the mode-oscillator strength.

The electronic (ε∞) and static (ε0) permittivity tensors,
as well as the contributions of the individual modes �εm,
are reported in Table XI for α-quartz, stishovite, zircon, and
periclase. Due to the symmetry of the different crystalline
systems, they have two different components parallel (‖) and
perpendicular (⊥) to the c axis for the first three materials
[α-quartz (trigonal), stishovite, and zircon (tetragonal)], while
the tensor is isotropic for periclase (cubic). In stishovite and
zircon (respectively, α-quartz), the phonon mode contributions
to ε

‖
0 come from the three IR-active A2u (respectively, A2)

modes, while the contributions to ε⊥
0 come from the four IR-

active Eu (respectively, E) modes. In periclase, the contribution
arises from the T1u mode. For α-quartz, the experimental
values (at 298 K) are taken from Ref. [32], except for the
two lowest E modes which are from Ref. [69]. For stishovite,
the measurements are those of Ref. [70]. For zircon, the
reported experimental values are from Ref. [71] for the parallel
components (values at 295 K), and from Ref. [72] for the
perpendicular components. For periclase, the measurements
are those of Ref. [73].

The theoretical values of ε∞ are larger than the experimental
ones by about 68%, as often found in DFT. The only exception
is α-quartz for which the values obtained with the different
GGAs are much closer to the experimental values and tend
to slightly underestimate it (note that HTBS results actually
refer to β-quartz). In fact, the overestimation of the electronic
dielectric constant can be related to the band-gap problem of
DFT, and, since the different XC functionals produce similar
incorrect band gaps, there is not a significant difference among
the different results.

The contributions of each individual mode �εm depend on
the volume (�εm ∝ �−1

0 ), the oscillator strength (�εm ∝ Sm)
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FIG. 10. (Color online) Variation of (a) the linear thermal expan-
sion ε, (b) the coefficient of linear thermal expansion α, and (c) the
bulk modulus B0 of periclase as a function of the temperature
computed using the different XC functionals: LDA in solid black,
PBE in solid red (gray), PBEsol in dashed black, AM05 in dashed
red (gray), WC in dotted black, and HTBS in dotted red (gray).
Relevant experimental data are also reported. The labels correspond
to the first author and year of publication of Refs. [60–64].

and the frequency of the IR-active mode (�εm ∝ ω−2
m ). As a

result, the effects of the different XC functionals are closely
connected to previous discussions of the structural properties
and the frequencies at the � point. The largest differences (in
absolute values [74]) from one functional to another obviously
appear in the low frequency modes for which the contributions
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TABLE XI. Electronic and static dielectric tensors of α-quartz, stishovite, zircon, and periclase. The contributions of the different phonon
modes to the static dielectric tensor are also indicated. The tensors are all diagonal. For α-quartz, stishovite, and zircon, they have different
components parallel (‖) and perpendicular (⊥) to the c axis, while the tensor is isotropic for periclase. In stishovite and zircon (respectively,
α-quartz), the phonon mode contributions to ε

‖
0 come from the three IR-active A2u (respectively, A2) modes, while the contributions to ε⊥

0 come
from the four IR-active Eu (respectively, E) modes. In periclase, the contribution arises from the T1u mode. For α-quartz, the experimental
values (at 298 K) are taken from Ref. [32], except for the two lowest E modes which are from Ref. [69]. For stishovite, the measurements are
those of Ref. [70]. For zircon, the reported experimental values are from Ref. [71] for the parallel components (values at 295 K), and from
Ref. [72] for the perpendicular components. For periclase, the measurements are those of Ref. [73]. The “good” (absolute relative error smaller
than 2%) theoretical values are in bold and the “bad” (absolute relative error larger than 5%) values are underlined.

LDA PBE PBEsol AM05 WC HTBS Expt. LDA PBE PBEsol AM05 WC HTBS Expt.

α-Quartz
ε‖
∞ 2.50 2.41 2.46 2.39 2.43 2.31 2.42 ε⊥

∞ 2.47 2.38 2.43 2.36 2.41 2.29 2.39
�ε

‖
1 0.73 0.68 0.71 0.65 0.69 0.00 0.67 �ε⊥

1 0.00 0.00 0.00 0.00 0.00 0.02 0.00
�ε

‖
2 0.75 0.85 0.79 0.87 0.81 1.50 0.65 �ε⊥

2 0.06 0.03 0.05 0.02 0.04 0.00 0.05
�ε

‖
3 0.15 0.05 0.09 0.04 0.07 0.00 0.11 �ε⊥

3 0.41 0.32 0.36 0.31 0.35 0.00 0.33
�ε

‖
4 0.73 0.76 0.74 0.74 0.74 0.74 0.66 �ε⊥

4 0.84 0.93 0.88 0.94 0.89 1.23 0.83
�ε⊥

5 0.03 0.01 0.02 0.01 0.02 0.00 0.02
�ε⊥

6 0.12 0.11 0.11 0.11 0.11 0.10 0.11
�ε⊥

7 0.70 0.72 0.71 0.71 0.71 0.71 0.65
�ε⊥

8 0.01 0.00 0.01 0.00 0.01 0.00 0.01
ε

‖
0 4.85 4.74 4.79 4.68 4.74 4.55 4.64 ε⊥

0 4.64 4.52 4.57 4.46 4.52 4.35 4.43
Stishovite

ε‖
∞ 3.38 3.44 3.43 3.42 3.42 3.43 3.33 ε⊥

∞ 3.30 3.35 3.35 3.34 3.34 3.34 3.24
�ε

‖
1 5.59 5.77 5.63 5.60 5.69 5.62 – �ε⊥

1 6.85 9.01 7.49 7.69 7.58 7.67 –
�ε⊥

2 0.45 0.09 0.38 0.30 0.35 0.34 –
�ε⊥

3 0.79 0.74 0.80 0.78 0.79 0.79 –
ε

‖
0 8.97 9.21 9.06 9.02 9.11 9.05 – ε⊥

0 11.40 13.19 12.02 12.12 12.06 12.14 –
Zircon

ε‖
∞ 4.35 4.41 4.41 4.39 4.39 4.41 3.80 ε⊥

∞ 4.15 4.17 4.19 4.17 4.18 4.18 3.50
�ε

‖
1 6.03 7.12 6.53 6.71 6.49 6.69 5.75 �ε⊥

1 5.69 8.07 6.68 7.15 6.59 7.10 5.70
�ε

‖
2 0.54 0.50 0.52 0.51 0.52 0.51 0.36 �ε⊥

2 1.19 0.57 0.95 0.79 0.94 0.79 0.60
�ε

‖
3 0.88 0.95 0.91 0.92 0.91 0.91 0.78 �ε⊥

3 0.12 0.23 0.17 0.20 0.16 0.21 0.15
�ε⊥

4 0.42 1.48 1.45 1.44 1.45 1.44 1.20
ε

‖
0 11.80 12.98 12.37 12.54 12.30 12.51 10.69 ε⊥

0 12.59 14.52 13.44 13.76 13.31 13.70 11.25
Periclase

ε∞ 3.04 3.10 3.11 3.09 3.09 3.10 2.95
�ε 6.76 7.37 6.81 6.87 6.80 7.50 6.25
ε0 9.80 10.47 9.91 9.96 9.89 10.60 9.20

MRE (%) MARE (%)
ε∞ 6.59 6.59 7.27 6.10 6.68 5.42 ε∞ 6.59 6.83 7.27 6.81 6.68 7.91
ε0 7.62 13.70 9.86 9.88 9.01 10.05 ε0 7.62 13.70 9.86 9.88 9.01 11.55

can be quite significant (since �εm ∝ ω−2
m ). For such modes,

the errors with respect to experiments can also be quite large.
For instance, the error on �ε⊥

1 for zircon is about 40%
when using PBE. It is also the contribution for which there
is the largest difference between XC functionals (42% from
LDA which is very close the experimental value to PBE). The
difference in �εm is the combination of the differences in
each of its components (�0, Sm, and ωm). In this case, the
most important differences originate from oscillator strength
Sm (22%) and ωm (12%, which also leads to 22% discrepancy
when taken to the square). These are slightly compensated by
the difference in �0 (2%).

It is worth mentioning that the differences in the oscillator
strength are due essentially to differences in the atomic
displacements (related to the second derivatives of the total
energy with respect to atomic displacements, just like the

frequencies). Indeed, we found that the XC functional has
a very little impact (at most 1%–2%) on the Born effective
charges (connected to the mixed second-order derivative of the
energy with respect to atomic displacements and macroscopic
electric field). And, since our results are in excellent agreement
with previous calculations, the Born effective charges are not
reported here for sake of brevity. However, we would like to
point out that it is known that DFT tends to overestimate
the Born effective charges [75], and, as a result, part of
the discrepancy of �εm with respect to experiments can be
explained by the too large oscillator strengths.

Finally, we turn to the static dielectric constant ε0. The
theoretical values are larger than the experimental ones by
about 8%–14%. This is directly related to previous discussion
about ε∞ and �εm. The best results are obtained within LDA,
while PBE and HTBS lead to the worst results. The other three
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FIG. 11. (Color online) Variation of (a) the linear thermal expan-
sion ε, (b) the coefficient of linear thermal expansion α, and (c) the
bulk modulus B0 of copper as a function of the temperature computed
using the different XC functionals: LDA in solid black, PBE in solid
red (gray), PBEsol in dashed black, AM05 in dashed red (gray), WC
in dotted black, and HTBS in dotted red (gray). Relevant experimental
data are reported. The labels correspond to the first author and year
of publication of Refs. [65,66].

functionals (PBEsol, AM05, and WC) have a similar accuracy
which is slightly worse than for LDA.

IV. DISCUSSION

In view of our results on different functionals, materials and
DFPT properties, a few general statements and considerations
can be made. For all oxides and semiconductors, LDA
performs surprisingly well in most of the cases. As the LDA

lattice parameter is strongly underestimated and the lattice
parameter has a large role in determining the frequencies
(see Sec. III D), the success of LDA must be due to some
cancellation of errors. Accurate vibrational properties are
obtained with a significantly underestimated lattice parameter.
This implies that using the experimental lattice parameter
with LDA will degrade the quality of the DFPT results.
Interestingly, PBE does not benefit from a similar effect and,
as a result, it is inaccurate in both the lattice parameters and
the frequencies. Similar conclusions were found when inves-
tigating the theoretical Debye-Waller factors [18], leading the
proposal of an ad hoc functional obtained by mixing 50%
of LDA and 50% of PBE. The optimal functionals providing
both accurate structural factors and reasonably accurate (i.e.,
at least better than PBE) frequencies are the WC, PBEsol, and
AM05. Finally, HTBS is not to be recommended for DFPT as
both structural parameters and frequencies are not accurate.

If one uses a functional such as PBEsol or WC (that
give very good structural parameters), phonon frequencies
are usually accurate within maximum 5%, vibrational en-
tropies within maximum 6%, and static dielectric constants
overestimate experiments systematically by at most 10%.
These results show that while there are differences between
functionals, DFPT computations are accurate enough to lead
to a reasonable predictive power.

On the other hand, the only metal in our data set (copper)
shows a very different behavior with the best functional being
PBE and the worst being LDA, PBEsol, WC, and AM05. In
view of previous work on metal phonon frequencies [19] and
Debye-Waller factors [18] with DFPT, this discrepancy might
originate from the pseudopotential.

V. SUMMARY

In this paper, the validity of various exchange-correlation
functionals (LDA, PBE, PBEsol, WC, AM05, and HTBS) has
been investigated for computing the structural, vibrational, di-
electric, and thermodynamical properties of various materials
(silicon, SiO2 α-quartz and stishovite, ZrSiO4 zircon, MgO
periclase, and copper) in the framework of DFPT. For the
structural properties, PBEsol and WC are found to provide
the results closest to the experiments and AM05 performs
only slightly worse. These three functionals constitute an
improvement over LDA and PBE in contrast with HTBS,
which has been shown to be really problematic for α-quartz.

For the vibrational and thermodynamical properties, LDA
performs surprisingly very well. In the majority of cases, it
outperforms PBE significantly and yields slightly better results
than the WC, PBEsol, and AM05 functionals. For the latter
functionals, this slight improvement is however detrimental for
the structural parameters. On the other hand, HTBS performs
also poorly for vibrational quantities.

For the dielectric properties, all the functionals fail
to reproduce the electronic dielectric constant due to the
well-known band-gap problem. They all tend to overesti-
mate the oscillator strengths and hence the static dielectric
constant.

Overall, LDA provides very good performances in DFPT
computations provided the LDA lattice parameter is used. If ac-
curate lattice parameters are also sought for, the PBEsol, WC,
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and AM05 provide the most accurate structural results while
still improving in terms of vibrational quantities compared to
PBE. These conclusions would definitely be strengthened by
considering a larger number of materials, and by performing
some all-electron calculations for the dynamical properties.
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