Skip to Main content Skip to Navigation
Journal articles

Ultrahigh interlayer friction in multiwalled boron nitride nanotubes

Abstract : Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons–Coulomb. Here, by using a ‘Christmas cracker’-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF–AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.
Document type :
Journal articles
Complete list of metadata
Contributor : Depot 4 Lyon 1 <>
Submitted on : Wednesday, October 9, 2019 - 4:10:49 PM
Last modification on : Wednesday, March 17, 2021 - 1:50:38 PM




Antoine Nigues, Alessandro Siria, Pascal Vincent, Philippe Poncharal, Lydéric Bocquet. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nature Materials, Nature Publishing Group, 2014, 13, pp.688-693. ⟨10.1038/NMAT3985⟩. ⟨hal-02309842⟩



Record views