Skip to Main content Skip to Navigation
Journal articles

Role of Optical Fiber Drawing in Radioluminescence Hysteresis of Yb-Doped Silica

Abstract : Point defects in the host lattice of a scintillator material can trap carriers, slowing down their migration or even preventing their transfer to luminescent centers. Such competition schemes between defects and luminescent centers may explain also the hysteresis effect, which consists of a progressive enhancement of scintillation efficiency with accumulated dose. We propose a comparison between the scintillation hysteresis effect of Yb-doped sol–gel silica glasses in bulk and fiber forms, and we correlate them with traps monitored by wavelength-resolved thermally stimulated luminescence in both materials. The results demonstrate that the fiber-drawing process is responsible for modifications of the defectiveness of the glass network, with a change of the local distribution of the traps surrounding the luminescent center. The consequence of such modifications is the removal, in the fiber samples, of the thermally stimulated luminescence peak ascribed to traps closer to Yb ions and unstable at room temperature. We highlight that suitable postdensification thermal treatments can significantly modify the concentration and spatial distribution of defects around a luminescent center and can therefore be used as a tool for the engineering of scintillating glasses.
Document type :
Journal articles
Complete list of metadata
Contributor : Depot 4 Lyon 1 <>
Submitted on : Friday, October 4, 2019 - 12:43:27 PM
Last modification on : Monday, June 14, 2021 - 10:02:02 AM




Ivan Veronese, Cristina de Mattia, Mauro Fasoli, Norberto Chiodini, Marie Claire Cantone, et al.. Role of Optical Fiber Drawing in Radioluminescence Hysteresis of Yb-Doped Silica. Journal of Physical Chemistry C, American Chemical Society, 2015, 119, pp.15572-15578. ⟨10.1021/acs.jpcc.5b04987⟩. ⟨hal-02305586⟩



Record views