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Abstract 

Photoionization of an atom in the presence of a uniform static electric field provides the unique 

opportunity to expand and visualize the atomic wave function at a macroscopic scale. In a number 

of seminal publications dating back to the 1980s, Fabrikant, Demkov, Kondratovich and Ostrovsky 

showed that this goal could be achieved by projecting slow (meV) photoionized electrons onto a 

position-sensitive detector and underlined the distinction between continuum and resonant 

contributions. The uncovering of resonant signatures was achieved for the first time fairly recently 

in experiments on the non-hydrogenic lithium atoms [Cohen et al, Phys. Rev. Lett. 110, 183001 

(2013)]. The purpose of the present article is the general description of these findings, with 

emphasis on the various manifestations of resonant character. From this point of view, lithium has 

been chosen as an illustrative example between the two limiting cases of hydrogen, where 

resonance effects are more easily identified, and heavy atoms like xenon where resonant effects 

were not observed. 

 

PACS numbers: 32.80.Fb, 07.81.+a, 32.60.+i, 32.80.Rm 
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I. INTRODUCTION 

 

Our intimate knowledge on atomic scale systems and their quantum description is entirely 

based on the key concept of the wave function, obtained by solving the Schrödinger equation. 

Nevertheless, and with very few exceptions, the wave function, or its squared modulus, is generally 

not measured directly. A dramatic progress has been achieved in recent years towards the 

development of a variety of strategies and approaches, aiming to a, more-or-less, direct and, if 

possible, complete observation of the wave function itself. These approaches depend, of course, on 

the intrinsic nature of the system under study. For example, microscopy techniques, such as STM or 

AFM, were employed for the detection of photoemission from a molecule deposited on a surface 

[1,2] and allowed for the reconstruction of its molecular orbitals [3]. Furthermore, imaging methods 

in conjunction with strong laser fields permitted the tomographic reconstruction of the electron 

density of ground state atoms and small molecules [4,5]. On the other hand, the development of 

quantum optics in connection with weak measurements concepts [6] and experiments [7] led to the 

complete (amplitude and phase) determination of the wave function of the photon [8]. In the present 

article we exploit another imaging technique, so-called photoionization microscopy, suitable for the 

experimental observation of the squared modulus of the wave function of an electron emitted from 

an atomic system. This is achieved by recording the two-dimensional flux of very slow electrons 

ejected in an ionization process in the presence of a static electric field. At present the method 

cannot provide information on the wave function’s phase. Nevertheless, it is one out of a few, if not 

the only one, having the advantage that the squared modulus of the wave function is directly 

recorded, i.e. it is projected and it is visible on the surface of the detector without any requirements 

for further processing, hypotheses or tomographic inversion. 

Within the context discussed here, the term “microscopy” refers to the experimental 

capability of extending the atomic or molecular wave function to macroscopic dimensions. From 

this point of view, the photoionization of a simple atom in the presence of an external electric field 

constitutes a perfect case study, owing to the coexistence of purely continuum as well as quasi-

bound atomic states (resonances) just above the ionization threshold. In that sense, photoionization 

microscopy does not provide access solely to free-electron wave functions, but provides access also 

to atomic wave functions of quasi-bound states, the latter bearing intrinsic properties of the atomic 

system under study. The above notions were explored for the first time during the eighties and early 

nineties by Fabrikant, Demkov, Kondratovich and Ostrovsky in a famous series of articles devoted 

to a thorough and essentially semiclassical analysis of the hydrogenic Stark effect [9,10,11,12]. Dealing 

first with the simpler case of photodetachment [10], the connection between interference patterns 

and classical electron trajectories was then extended to the far more complicated case of 
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photoionization. In that latter case, the presence of narrow Stark resonances and their impact on the 

interference patterns was examined separately. 

A photodetachment microscope [13] was experimentally implemented soon after the 

emergence of photoelectron imaging techniques [14]. This experimental breakthrough verified 

unambiguously the close connection between quantum interferences and classical trajectories, 

allowing in addition for electron affinity measurements with unprecedented accuracy [15]. A few 

years later the first photoionization microscopy experiments were performed with xenon atoms 

[16,17,18]. Remarkably, in all these experiments, the number and position of nodes of the recorded 

wave function evolved smoothly with photon energy, and remained to a large extent insensitive to 

the presence of resonances. This fact was attributed to the coupling between continuum and quasi-

bound states, induced by the large ionic Xe+ core. This interaction is absent in the hydrogen atom 

because of the orthogonality between its continuum and quasi-bound states. Nevertheless, 

subsequent [19] as well as recent [20,21,22] theoretical developments predicted that the observation of 

resonant effects in non-hydrogenic atoms is indeed also possible under certain conditions. It 

became, however, evident that a first step towards this goal is the observation of resonant 

phenomena in atoms with a single valence electron outside closed (sub)shells, the latter forming an 

ionic core of small size in order to minimize the aforementioned coupling. We have indeed 

demonstrated recently the appearance of resonant signatures in photoionization of lithium atoms 

[23], immediately followed by a clear demonstration in the hydrogen atom itself [24]. This latter 

experiment fully verified old, as well as recent [25,26], theoretical works. Finally, another 

experimental demonstration of resonant effects was even more recently achieved in helium atoms 

[27]. 

The purpose of the present article is a detailed description of our findings in the lithium 

experiment over the whole energy range between the saddle-point energy and the zero-field 

ionization limit. The small ionic core of this atom allows for the observation of resonant effects. 

Lithium is therefore representative of a general atomic system standing between hydrogen 

(exhibiting clear resonant effects) and heavy atoms like xenon (where no resonant effects were 

experimentally observed). Emphasis will be given on the differences observed between the 

continuum and the resonant images of wave functions, as well as their connection with the 

aforementioned recent experimental achievements [24,27] and theoretical work [19-22]. A quite brief 

presentation on our non-resonant data was given in [28], for the purpose of testing the so-called 

coupled channel theory. Here, however, the interpretation of our experimental results is based on an 

electron wave packet propagation approach, relying on solving the time-dependent Schrödinger 

equation (TDSE). 
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The rest of the article is organized as follows: In the second section we describe the 

photoionization microscope as well as the full experimental set-up and procedure. Next, we briefly 

review the essential points of the theory of the Stark effect [11,12,29] upon which photoionization 

microscopy is based, as well as the computational, TDSE-solving, procedure providing radial 

distributions that can be compared with the experimental ones. The fourth section is devoted to a 

presentation and discussion of both our continuum and resonant experimental results on lithium. 

Finally, in the concluding section, we discuss perspectives for further work. 

 

 

II. EXPERIMENTAL SETUP AND PROCEDURE 

 

In our experiment a beam of lithium atoms is produced by laser ablation of a pure lithium 

metallic rod. The lithium atoms are entrained in a pulsed helium gas jet controlled by a piezoelectric 

valve operated at 10 Hz. The source chamber is pumped by a 750 l/s diffusion pump. The lithium 

beam enters the interaction chamber through a 1-mm-diameter skimmer placed 2 cm downstream 

from the nozzle. The interaction chamber is pumped by a 250 l/s turbomolecular pump. The beam 

of ground state lithium atoms interacts at right angle with a tunable UV laser beam delivered by a 

high finesse OPO system (Spectra-Physics MOPO). The system operates at a repetition rate of 

10 Hz and delivers light pulses of ~1 mJ energy and ~5 ns duration. Its ~0.05 cm-1 linewidth is 

adequate for resolving Stark spectral structures that may be separated by less than 1 cm-1 and for 

avoiding any blurring of the image interference patterns. The atomic and laser beams are both 

perpendicular to the electron spectrometer (and electric field) axis. The final Stark states are single-

photon excited out of the 2S1/2 (1s22s) lithium ground state (wavelength range 232-228 nm) and 

their azimuthal quantum number m is selected by directing the linear laser polarization either along 

the direction of the electric field (dipole selection rule Δm=0), or perpendicular to it (|Δm|=1). 

Our microscope is similar to the one employed in earlier experiments [16-18,30]. It is based on 

a standard three electrode velocity-map imaging (VMI) spectrometer design [31] and a full 

analytical description of its geometry, dimensions and operating conditions is available in [32]. 

Photoionization takes place in the center between the first two electrodes: a solid repeller plate and 

an extractor plate with a hole in its center. These electrodes are biased at voltages VR and VE 

respectively. The third electrode is grounded and of the same design as the extractor plate. The 

holes of the last two electrodes create an inhomogeneous electric field allowing the fulfillment of 

the VMI condition [31]. The field variation near the center of the interaction region is roughly linear. 

It amounts to about 2%/mm along the spectrometer axis and about 0.1%/mm transversely to this 
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axis [32]. For maintaining an overall electric field variation below ±0.1%, we limit the axial 

dimension of the interaction volume below 200 µm (by moderately focusing the laser beam using a 

≈25 cm focal length lens) and its transverse dimension below 2 mm (by placing a diaphragm 

transversely to the lithium beam path at the entrance of the spectrometer). Hence, within the limited 

laser-atom interaction volume the field may be considered as being nearly constant. 

Photoelectrons resulting from the photoionization of lithium atoms are accelerated by the 

field towards the end of a field-free drift tube. An electrostatic magnifying Einzel lens, consisting of 

three identical equally-spaced electrodes with holes at their centers, is placed in the middle of this 

tube [33]. A voltage VL is applied to the middle electrode, while the other two are grounded. The 

electrons are detected at the end of the drift region by a two-dimensional position-sensitive detector 

(PSD). The PSD is made of a tandem microchannel plate (MCP) assembly followed by a phosphor 

screen. A CCD camera is used to record the 2D distribution of the light spots on the phosphor 

screen. Recorded images are transferred to a PC, where they are accumulated over several thousand 

laser shots. In order to improve the signal to noise ratio the MCP is operated with a 100-ns gate [34]. 

The entire spectrometer, including the electrodes, the drift tube and the detector assembly, is 

shielded against external magnetic fields by a double µ-metal layer, ensuring a magnetic field below 

1 µT in its interior. 

The VMI condition [31] is fulfilled for a given ratio of the voltages VR and VE, which is 

determined by the design of the spectrometer and moderately depends on whether the Einzel lens is 

on or off. The chosen values of VR, VE, and VL result in a field strength F≈1 kV/cm at the center of 

the interaction region and an up to ~20-fold magnification of the images. For ~10 meV electrons 

(roughly the range of interest in our experiments) such a magnification leads to typical image sizes 

of ~10 mm and a ~1 mm spacing between consecutive fringes. Without any magnification the same 

images would have a size of ~1 mm and a fringe separation of ~100 μm. This separation is 

comparable to the resolution limit of our PSD and would make the observation of the structure of 

the wave function hardly achievable. 

 

 

III. PRINCIPLES OF PHOTOIONIZATION MICROSCOPY AND THEORETICAL 

CALCULATIONS 

 

A. Qualitative quantum mechanical description 

 

Let us begin by presenting the principles of photoionization microscopy by means of a review 

of the quantum mechanical theory of the Stark effect. The Hamiltonian of a hydrogen atom (Z=1) in 
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a uniform static electric field of strength F directed along the z-axis (Fig. 1(a)), is separable in 

parabolic coordinates ξ=r+z, η=r–z and φ=arctan(y/x). Separability along φ leads to the azimuthal 

quantum number m, while separability along ξ and η involves two separation constants, Z1 and 

Z2=Z–Z1, and leads to parabolic quantum numbers n1 and n2, counting the nodes in the ξ- and η-part 

of the wave function, respectively [11,12,29,35]. Due to the asymptotic form of the ξ-potential curve 

V1(ξ) for ξ→∞, the electron motion is always bound along the ξ–coordinate (see Fig. 1(c)). The 

energy range of interest here is located between the classical saddle point energy cl
spE  = –2·F1/2 

atomic units (a.u.) and the field-free ionization limit E=0. For E ≥ cl
spE  the asymptotic behavior of the 

η-potential curve V2(η) for η→∞, allows the escape of the electron in the negative z-direction, along 

the η-coordinate (Fig. 1(d,e)). Each n1 is associated to a threshold 1n
thrE , found by solving the 

equation E=–2[Ζ2(E,m,F,n1)·F]1/2 [29]. For a given n1 the quantum number n2 is meaningful only 

when E< 1n
thrE . Each (n1,n2) pair corresponds to a quasi-bound state for which the electron escapes 

solely via tunneling through the η-potential (Fig. 1(d)). For 1n
thrEE >  where n2 loses its meaning, the 

electron escapes over the η–potential barrier (Fig. 1(e)). Thus, within cl
spE ≤E≤0 quasi-discrete and 

continuum Stark states with different n1 values coexist. All hydrogenic Stark states with different n1 

are orthogonal to each other. 

Wave function microscopy aims at recording the photocurrent density, 
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at a macroscopic distance, along a given constant η=ηο paraboloid which crosses the z-axis at 

z=zo=–ηo/2 where the detector is located (see Figs. 1(a,b)) [16,18]. In Eq. (1) ψ is the final state 

electron wave function. Since ηo→∞ while the ξ-motion is bound, it holds
 
that ξ<<ηo and the 

paraboloid may be well approximated by a plane perpendicular to the z-axis. It is to be emphasized 

that, although wave function microscopy experiments provide directly photoelectron angular 

distributions [36], the aforementioned interference patterns refer principally to the radial 

distributions of the observed images. 

Let us consider first the continuum spectrum in the absence of any resonance and denote by 
o
1n  the highest quantum number corresponding to an open n1-channel for a given E (i.e. 

o
1n

thrE ≤E≤

1o
1 +n

thrE ). Then, Eq. (1) for this, so-called, background (BG) density is put to the form, 
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where 
1,1 nχ  denotes wave functions along the ξ-coordinate and cn1 the corresponding weights which 

depend on the excitation process. The coherent superposition of Eq. (2) has the form of an 

interferogram, which is dominated by o
1,1 nχ  and exhibits o

1n  dark fringes. As is made evident from 

Fig. 2, o
1n  increases monotonically with energy for a given field strength. 

Let us now consider the additional presence of a single narrow resonance corresponding to a 

quasi-bound state and associated to a parabolic quantum number res
1n . Given that 

res
1n

thrEE <  and 
o
1n

thrE ≤E≤ 1o
1 +n

thrE , it necessarily holds that o
1

res
1 nn > . The quasi-discrete state’s wave function 

( )ξχ res
1,1 n

 modifies the photocurrent density j(ξ,η=ηο) according to: 

 ( ) ( ) ( )
2

0
,1,1,oRESBG

o
1

1

11
res
12

res
1

, ∑
=

+ +∝=
n

n
nnnnn caj ξχξχηηξ  (3) 

where the weight 
2

res
1 ,nna  depends on n2. The latter, however, cannot, in principle, be extracted from 

jBG+RES(ξ,η=ηο). For a sufficiently narrow resonance, the wave function res
1,1 nχ  dominates the 

interferogram. Therefore, jBG+RES(ξ,η=ηο)
  
is expected to evolve non-monotonically in the vicinity of 

resonances. Specifically, quantitative calculations [12,25] reveal the following on-resonance 

characteristics: 

(i) A strong modification of the interference pattern that can include a fringe number change. 

Hence, jBG+RES(ξ,η=ηο)
 
can exhibit n1

res  dark fringes while their number is reduced to n1
o  at electron 

excitation energies just below and just above the resonance. 

(ii) A modulation of the fringe contrast due to the coherent superposition of resonant and non-

resonant contributions in Eq. (3). 

(iii) A broadening of the image outer ring, associated to tunneling ionization. For the hydrogen 

atom, the effect was first pointed out by Kondratovich and Ostrovsky [12] (see Fig. 4 therein) and 

more thoroughly analyzed recently by Zhao and Delos [25]. It was also noticed by Texier in his Xe 

calculations [19]. It corresponds to an on-resonance increase of the tunneling probability through the 

potential barrier of V2(η) as a result of the electron’s high localization near the edge of the potential. 

The ultimate goal of photoionization microscopy is to uncover the features of j(ξ,η=ηο) 

stemming from the resonant state(s) res
1,1 nχ . For the hydrogen atom this was achieved quite recently 

[24]. Of course, the observation of these features in atoms more complex than hydrogen is of 

fundamental significance, as it will turn photoionization microscopy into a more general technique, 

eventually capable of dealing with polyatomic systems. However, the Hamiltonian of complex 

atoms in the presence of an external electric field is no longer separable in parabolic coordinates 
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due to short-range interactions occurring when the excited electron penetrates the ionic core. This 

leads to a mixing between hydrogenic states of different n1, which are no longer pure eigenstates of 

the atom. Hence, even if the system is initially prepared in a quasi-discrete state, it may “leak” 

(autoionize) to the degenerate continua. As a result the resonant features (i)-(iii) may be obscured. 

The degree of core penetration can be assessed by a comparison of the magnitude of the quantum 

defects μl for the ns, np and nd Rydberg series. The substantial difference between xenon (μs≈4.0, 

μp≈3.5 and μd≈2.4) and lithium quantum defects (μs≈0.4, μp≈0.05 and μd≈0.002) [37] partly explains 

why resonant effects were not observed in the heavy xenon atom experiment [16-17] while being 

apparent in lithium [23]. The above arguments also suggest that the hydrogenic behavior can be 

induced by configuring the experiment in a manner where high-|m| states are populated, suppressing 

contributions from highly penetrating low-l orbitals. Moreover, it would be desirable to employ 

single-m excitation schemes in order to bypass the complications arising from interferences among 

different m-components [19]. Finally, theoretical calculations demonstrating resonant effects in 

xenon [19] and the Alkali atoms [21] point towards an extreme sensitivity of the resonant 

manifestations on the field strength. This is compatible with the findings of the He experiment [27] 

where the resonant character was unveiled near avoided crossings [38] between pairs of resonances. 

Near the center of these crossings, one of the resonances is decoupled from the degenerate continua, 

leaving tunneling as the only electron escape mechanism. 

 

B. Connection between quantum mechanical and classical Coulomb/Stark problem 

 

The classical treatment of the Coulomb/Stark problem deals solely with open n1-channels, 

since tunneling is classically forbidden. Therefore, taking into account the above point (iii), it is 

expected that any deviations from the well-known classical energy dependence of the maximum 

radius of photoelectron impacts would potentially signal the presence of resonances. Our purpose 

here is to establish a connection between the classical and quantum mechanical descriptions of the 

problem, in order to unveil the conditions under which such deviations would be easier to observe. 

Classical simulations [39] and subsequent experimental verifications [40,16,17] showed that a 

particular characteristic of slow photoelectron imaging is the appearance of two concentric 

structures in the recorded images. The outer one stems from classical source-to-detector electron 

trajectories, which are complicated and intersect the negative z-axis at least once. The maximum 

classical radius, c
maxR , of this, so-called, indirect contribution is related to the excitation energy 

through a simple analytical expression (see Eq. 11 of [39]). The inner structure (direct contribution) 

appears only for E≥Edir≈0.775 cl
spE  and stems from simple quasi-parabolic trajectories that do not 
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intersect the z-axis. The classical radius RI of the direct contribution is zero at E=Edir and its energy 

dependence is different from that of c
maxR  [39], but for E>0 it approaches and finally matches c

maxR . 

A classification of the two contributions is provided via the electron’s launch angle β with respect to 

the electric field. All escaping trajectories correspond to launch angles β≥βc≡arcsin[E/ cl
spE ] (E≤0), 

while for β<βc the electron is classically bound. Note that βc=0 for E≥0. The indirect trajectories are 

distinguished from the direct ones through the angle βo for which the corresponding trajectory 

intersects z-axis at infinity. Indirect trajectories correspond to launch angles within the [βc,βo] 

interval and the direct ones to the [βo,π] one. 

A connection with the quantum description may be achieved through the separation constant 

Z1, which is classically given by Z1=Z·cos2(β/2). On the other hand, the solution of Schrödinger 

equation along the ξ-coordinate provides a discrete set of separation constants 1
1
nZ =Z1(E,F,m,n1). 

As an example, Fig. 3 shows the classical dependence of Z1 as a function of β, along with the 

critical angles βc and βo and the computed quantum mechanical 1
1
nZ  values for m=0, F=1 kV/cm 

and ε≡Ε/| cl
spE |=–0.5. The conditions 0≤ 1

1
nZ ≤Z are fulfilled for the quantum numbers n1=0 to n1=27. 

By inspection of the graph, we note that the direct contribution consists of ξ-wave functions with 

quantum numbers in the range 0≤ n1
dir≤11, while the indirect contribution spans the 12≤n1

ind≤21 

range. Evidently, any possible presence of quasi-bound Stark states would necessarily correspond to 

22≤n1
res≤27 (for 0<β<βc). Hence, for this particular (E,F,m) set, the maximum number of continua 

is n1
o =21 (in accord with the computation of Fig. 2) and, therefore, n1

o  is equal to the maximum 

number n1,max
ind  of dark fringes that may be exhibited by the indirect contribution. Furthermore, the 

direct contribution will exhibit at most n1,max
dir =11 dark fringes. Consequently, since n1,max

dir < n1,max
ind <

n1
res , the direct contribution will never correspond to resonances. Moreover, because the predicted 

on-resonance broadening of the image outer ring due to tunneling is strongly connected with the 

larger values of n1
res , it is expected that this broadening would occur at the outer part of the indirect 

contribution. Finally, for ε>εdir=Edir/ cl
spE ≈–0.775 the coexistence of the resonant contribution with 

the non-resonant direct one would make the uncovering of fringe number changes quite difficult 

and, additionally, resonant res
1n  values around ~25 would necessitate the extreme limits of the 

microscope’s spatial resolution. Hence, it is made clear that the most suitable energy range for 

observing resonant effects is located below Edir, where only the indirect contribution is present and 

the number of continua and fringes is relatively small. 
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C. Wave packet propagation calculations 

 

We now turn to a quantitative theoretical description of photoionization microscopy which 

is based on a wave packet propagation approach, according to which an initial wave function is 

built at time t=t0 and is subsequently propagated until time t>t0, by solving the TDSE. The main 

methodological aspects of the approach can be found in [41] and have been modified and adapted for 

the present purposes in [22]. Using first-order time-dependent perturbation theory the TDSE is (in 

a.u.), 

 ( ) ),( tSEHH
t

i Fat r
r

=Ψ−+−
∂
Ψ∂ . (4) 

where E is the electron energy, the term HF=Fz corresponds to the Stark Hamiltonian associated 

with the static electric field, which is oriented along the z-axis, and Hat stands for the free atom 

Hamiltonian, 

 ( )rV
r
L

r
H at ++

∂
∂−= 2

2

2

2

2

ˆ

2
1

 (5) 

with L̂  the angular momentum operator. In Eq. (5) V(r) is a radial atomic potential describing the 

interaction between the valence electron and the ionic core. For the hydrogen atom V(r) is simply 

written as –1/r, while for non-hydrogenic atoms with a finite size ionic core it assumes the 

following parametric form, 

 ( ) ( ) ( )rf
rr

rZrV d
42

α−−= l  (6) 

where αd is the dipole polarizability of the ionic core and f(r) is a cut-off function, remedying the 

unphysical small-r behavior of the dipole polarization term –αd/2r4. The effective charge Zl(r) in 

Eq. (6) is parameterized as ( ) ( ) ( ) ( ) ( )rr reeZrZ
31 2 11 ll

ll
αα α −− +−+= . For the lithium atom, the nuclear 

charge is Z=3 and the employed cut-off function as well as all the relevant parameters can be found 

in [42]. The source term S( r
r ,t) in Eq. (4) arises from the laser-excited electron wave, assuming the 

appropriate angular momentum and magnetic quantum numbers l and m, respectively. Specifically, 

this term is defined as, 

 ( ) ( ) mYrStftS l

r
=),(r  (7) 

where  is the spherical harmonic of the outgoing electron ( ) and S(r) is r 

times the radial 2s function. Finally, in Eq. (7) the employed cw-type time dependence, 

f(t)=1+erf(t/tw), gives a smooth turn-on for the laser with time width of tw and for larger times the 

electron wave is continuously launched. 

mYl
mm YYL ll ll )1(ˆ2 +=
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The calculation starts from t0~–2tw. The wave packet propagation is calculated through the 

split-operator method [43], on a two dimensional (r,l) grid. Propagation continues for a time t>t0 for 

which the transients from the laser turn-on have decayed to zero. The computed wave function is 

numerically summed over the orbital angular momenta l yielding ψm(ρ,z), where m is the azimuthal 

angular momentum and (ρ,z) denote cylindrical coordinates. For accelerating convergence we apply 

a Hankel transform to ψm(ρ,z) and obtain, 

 Ψsim(kρ, z)=∫dρρψm(ρ,z)Jm(kρρ) (8) 

where Jm(kρρ) is a Bessel function and kρ is proportional to the distance from the z-axis at z=zo (the 

location of the detector). For zo→–∞ the radial distribution is proportional to kρ|Ψsim(kρ, zo)|2. The 

latter quantity is plotted and compared to the experimental results. The operation of Eq. (8) to wave 

function ψm(ρ,z) simulates velocity map imaging [31], since in terms of classical light or particle 

optics a VMI spectrometer may be regarded as a Fourier (or Hankel for cylindrical symmetry) 

transformer, relating the particles radial distribution at the source plane to its vectorial velocity 

distribution (the latter projected on the detector plane) [32]. In the present case, however, it is 

employed solely for the purpose of speeding up the calculation, because Ψsim(kρ, zo) is found to 

converge much more rapidly than ψm(ρ,z). Thus, Eq. (8) effectively propagates the wave function at 

large distances, without the need to actually solve the TDSE up to these distances. 

 

 

IV. RESULTS AND DISCUSSION 

 

A. Energy Evolution of Non-resonant Images: General Overview 

 

Before presenting the specific resonant features unveiled by the lithium images, it is 

instructive to discuss first their general evolution with energy. Indeed, resonant signatures may be 

unveiled only after non-resonant features have been well characterized. Selected images are 

presented in Figs. 4 and 5(a), for m=0 and |m|=1 final Stark states, respectively. For the employed 

single-photon excitation scheme from the ground state of Li, both series of images probe the p-

character of the Stark states. This is evident in the angular distribution exhibited by the |m|=1 set but 

obscured in the m=0 disc-shaped images, because in the latter case the laser polarization is 

perpendicular to the PSD plane. 

Starting from a “point” image at ε≈–1 and up to ε≈εdir=Edir/| cl
spE |, we observe, as expected, 

only the indirect contribution. Although these ε<εdir non-resonant images correspond to a coherent 

ξ-wave function superposition (see Eq. (2)), they show no sign of beating effects and their number 



 

 
- 12 - 

of fringes increases smoothly with a rate that can be predicted by inspection of Fig. 2. A few 

selected radial distributions extracted from the |m|=1 images of Fig. 5(a) are given in Fig. 5(b) along 

with the corresponding curves obtained by the wave packet calculations. The latter were performed 

using F=1000 V/cm and tw=50 ps. The wave function was propagated up to 200, 500 or 1000 ps and 

up to a distance of 1 μm from the origin. For this distance convergence was reached. As may be 

seen, the computed non-resonant curves reproduce well the number of fringes, but not equally well 

their relative intensity and contrast, the latter being of course severely limited by the experimental 

resolution. 

For ε≥εdir, the images begin to show the additional direct contribution. Its appearance is 

accompanied by a considerable (relative) intensity loss of the indirect contribution. The latter is 

hardly visible just above εdir, where the spatial size of the direct contribution is quite small. 

Nevertheless, a small number of central fringes of the indirect contribution are observed within the 

small region of overlap between the two contributions (see the central part of the ε=–0.583 image of 

Fig. 5). This is a first manifestation of beating effects between the direct and indirect terms, 

expected on the basis of the coherent superposition of Eq. (2), and these fringes gain in intensity 

through interference with the much stronger direct signal. As the energy is increased further, the 

fringe pattern belonging to the direct contribution develops, which, as expected, is characterized by 

a relatively small number of well-resolved fringes. The latter become closely spaced and faint at 

positive energies, ε>0, but they are visible (Fig. 4, ε=+0.470) if the ionization signal is sufficiently 

strong. 

Let us now examine the observed energy dependence of c
maxR  and RI. Fig. 6 depicts this 

dependence for a |m|=1 dataset, recorded at a slightly different electric field than the one 

corresponding to the data of Fig. 5. Additionally, the measurements of Fig. 6 are much more closely 

spaced in the vicinity of cl
spE  (steps of 1-2 cm-1). In fact, the lowest energy measurement 

corresponds to the first image where a quantifiable signal could be obtained. For measuring the two 

radii, the experimental distribution pexp(Θ,R) is first angularly integrated and the radial distribution 

Pexp(R)=∫pexp(Θ,R)dΘ is obtained. Then, c
maxR  and RI are defined here as the outermost inflection 

points of R·Pexp(R) for the indirect and direct contribution, respectively. This definition is chosen 

because these inflection points should lie very close to the classical outer turning points. 

The graph of Fig. 6 shows that within the (encircled) low-energy zone, near cl
spE , the 

behavior of c
maxR  is irregular, exhibiting a number of oscillations. Using the analytical formula 

provided in [32] (Eq. (2a,b) therein) for the axial voltage variation for our specific VMI geometry we 

estimate the field strength at the center between the repeller and extractor electrodes for this dataset 
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to be ≈998 V/cm. This value corresponds to cl
spE =–193.4 cm-1. Fitting the full dataset of Fig. 6 to an 

expression of the form c
maxR (E)=C[E+| cl

spE |]1/2 [39] (for E<0 and with cl
spE  and the scaling factor C 

as the fitted parameters) leads to cl
spE =–192±1 cm-1. While this value is fairly consistent with the 

above expectation, the fit leads to a poor reproduction of the behavior of the experimental points. 

Indeed, the fitted curve (black dashed line in Fig. 6) describes the aforementioned low energy zone 

just “on the average” and underestimates the high-energy part of the data by about 2% (somewhat 

larger than the experimental uncertainty of the radii). In contrast, if the oscillating points below E≈–

170 cm-1 are excluded, we obtain a quite satisfactory fit for the whole set of data, apart from that 

oscillating part. On the other hand, the fitted value, cl
spE =–186±1 cm-1, is now found to be 

considerably lower. A number of reasons may be responsible for the discrepancy.  First, as is well 

known [44], the saddle point energy is in fact m-dependent and given by (in a.u.), 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−−≈ 2/124/12/1

32
3

2
12; FmF

m
FFmEsp  (9) 

Using Eq. (9) we find Esp(|m|=1; F=998 V/cm)≈–189 cm-1, i.e. the saddle point energy 

increases by ≈4 cm-1 and gets closer to the value extracted from the high energy fit. The remaining 

difference may thus arise either from the definition of c
maxR  and RI given above, or from a small 

overestimation of the field (due, for example, to a laser/atom interaction point displaced by 1-2 mm 

from the center between the repeller and extractor electrodes), in conjunction perhaps with a small 

systematic error in the absolute wavelength calibration of our laser system. Note in passing that, in 

principle, another estimate for cl
spE  may be provided by the indirect radius RI, the experimental data 

of which form a quite smooth curve with no irregularities. However, no analytical formula is 

available for RI. Therefore, the curve is numerically computed via the expressions given in [39] and 

it is subsequently scaled in amplitude and energy in order to match the experimental points. This 

“trial-and-error” procedure leads to cl
spE =–187±3 cm-1, but it is found to be less reliable than the 

direct fit of c
maxR . 

The above findings are in complete agreement with the expectations presented in subsection 

III.B. Specifically, the smooth energy dependence of RI is compatible with the non-resonant 

character of the direct contribution. Moreover, the large number of fringes of the indirect 

contribution, along with its signal weakness, makes the experimental search for resonant 

manifestations in the ε>εdir range quite demanding. In fact, c
maxR  is usually found to be fairly 

regular there, signaling the dominance of the continuum n1-channels over the resonances. On the 
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contrary, by expressing the energy dependence of c
maxR  and RI in terms of ε (shown in the upper 

horizontal axis in Fig. 6 and computed using the cl
spE  value extracted from the high energy, E>-170 

cm-1, fit of c
maxR (E)) it becomes obvious that a number of images and outer radius measurements 

appear to be recorded below the saddle point energy. Furthermore, the irregular (or, better, non-

classical) behavior of the outer radius below and slightly above ε≈–1 (where the number of continua 

is small), can be considered as a first potential manifestation of the electron’s escape via tunneling 

and it is fully compatible with the so-called “resonant radius”, as defined and discussed by 

Kondratovich and Ostrovsky [12] (see Fig. 4 therein). This radius is larger than c
maxR  near cl

spE  and it 

exhibits appreciable magnitude even for E< cl
spE . Experimentally, this behavior is observed in both 

the |m|=1 and m=0 data. In the subsequent subsections we present separately these two cases. 

 

B. Resonances: the |m|=1 case 

 

Let us inspect the |m|=1 data first, since they are closer to the hydrogenic case because the 

relevant wave functions do not contain any l=0 core-penetrating component. Specifically, we 

examine the energy range around ε~–1, which is encircled in Fig. 6 and characterized by the 

aforementioned non-classical behavior of the outer image radius. Figs. 7(a) and (b) show the radial 

distributions R·Pexp(R) and the corresponding images, respectively. The evolution of the radius of 

the outer inflection point as a function of energy is given in Fig. 7(c). Finally, Fig. 7(d) shows the 

integrated electron signal, proportional to the total excitation cross-section. We observe that each 

sudden increase of the outer radius is accompanied by a cross-section maximum. On the other hand, 

a comparison between distributions and images reveals that increased outer radii correspond to 

images exhibiting an external low intensity “halo” (see images at ε=-0.973 and -0.953, it is not 

visible in the small lowest energy image), i.e. a broadened outer image ring which is a sign of 

electron tunneling through the η-potential barrier [25]. Therefore, the images with this halo should 

correspond to resonances. Indeed, despite the low fringe contrast of the images (due to their small 

size and the finite microscope’s spatial resolution) it is fairly evident that, for example, the ε=–

0.993 distribution shows an additional fringe ( res
1n =1) with respect to the surrounding measurements 

performed at ε=–1.003 and –0.983 ( o
1n  = 0). Hence, this image corresponds to the superposition of 

Eq. (3), where the resonant character dominates or, at least, manifests itself. Therefore, to a good 

approximation, it is a direct macroscopic projection of a quantum standing wave characterizing the 

quasi-bound electronic state ( res
1n =1, n2, |m|=1) with unspecified n2. Interestingly, there is more than 
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one resonance with the same res
1n . This is the case of the ε=–0.973 and ε=–0.953 distributions, for 

both of which res
1n =2. Obviously n2 should differ for these two resonances. 

The comparison between theory and experiment proved to be a non-trivial task due to the 

uncertainty in the knowledge of the exact field strength, as indicated by the different values 

provided by SIMION® calculations, by the predictions based on the analytical axial potential 

formula given in [32] and by the value extracted from the fit to the high energy points of the c
maxR (E) 

curve. While the estimations of the field value based on the first two methods differs by ~1%, the 

largest difference with the fit to the image radius amounts to about 6%. With these facts in mind, 

the present wave packet calculations were performed using a fixed value of F=1000 V/cm i.e. 

somewhat different from the 1010 V/cm employed in [23], both being consistent however within the 

estimated accuracy. The calculation was performed using the same parameters employed above for 

the non-resonant distributions. For the specific choice of F used here theory revealed several 

resonant radial distributions and abrupt changes of the number of fringes. Some of these 

distributions bear similarities with the experimental ones. Particularly, the on-resonance broadening 

of the outer lobe of the distribution is well predicted by the theoretical model for all resonant 

curves. The energies, however, of the experimental and theoretical resonant distributions differ. 

Consequently, it was difficult to make a resonance-by-resonance matching. Therefore, we provide 

in Fig. 8 just an example of a single theoretical resonant radial distribution, along with non-resonant 

ones lying slightly below and above this resonance. The latter is characterized by res
1n =2 and, 

consequently, it can be associated to either the ε=–0.973 or the ε=–0.953 experimental resonant 

distributions. Nevertheless, the shape of the computed resonant curve resembles more the ε=–0.953 

experimental one. The contrast of the latter is here, as well, limited by the experimental resolution. 

The resonant character is imprinted and evolves over a number of computed distributions 

across a resonance. This could not be observed experimentally due to the successive recording steps 

of ~1 cm-1, which are rather large for the present purposes. Given also the uncertainty in the field 

strength, a more comprehensive comparison between theory and experiment is not possible at 

present. The findings of the He experiment [27] as well as the theoretical work of Ref. [21] could be 

useful for explaining the observed differences. Both works demonstrated the high sensitivity of 

resonant manifestations to the value of F. Particularly, in Ref. [21], the author showed that, 

depending on the field strength, an additional bright fringe of the resonant image may either be 

almost completely merged with the main outer lobe or be clearly visible. 

As expected, it becomes much harder to recognize resonant-induced fringe number changes 

at higher energies (while remaining below εdir), due to the increased number of open n1-channels 

and the decreasing spatial spacing between successive fringes. Therefore, the identification of 
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resonant character at higher energy needs to be based on the appearance of resonance/continuum 

interference patterns (as implied by Eq. (3)) and the tunneling-induced broadening of the outer ring 

[23]. Such an example is given in Fig. 9, where an |m|=1 resonant image at ε≈–0.79 is indeed 

characterized by a fairly broader outer ring as compared to the red and blue off-resonance images. 

Moreover, the resonant image exhibits a pronounced beating pattern while the off-resonance ones 

show a fairly smooth fringe intensity variation. 

 

C. Resonances: the m=0 case 

 

Apart from the laser polarization, the m=0 data were recorded under supposedly the same 

experimental conditions and field strength as the |m|=1 ones. As opposed, however, to the latter 

case, we were able to unambiguously assign the resonant character to just a single image. Figure 10 

shows the relevant radial distributions, images, outer inflection point radii and total electron signal 

in the vicinity of this resonance. Despite the low fringe contrast, the resonant radial distribution at 

ε=–0.975 (Fig. 9(a)) clearly exhibits an intense central lobe and, consequently, an additional dark 

fringe with respect to the non-resonant distributions having a single dark fringe ( o
1n =1). Therefore it 

can be characterized by the ( res
1n =2, n2, m=0) set of quantum numbers. The “halo” at large radius 

(Fig. 10(b)), stemming from the tunneling effect, is also apparent here and is responsible for the 

observed increase of the maximum image radius by about 30%. This is evident in Fig. 10(c) where 

the measured outer radii are compared to the classical c
maxR (E) curve, fitted to the high energy 

points of this set. The fit showed that a few images were again recorded below the value of cl
spE  

extracted from the fit. Apart from their non-classical outer radii, however, these images showed no 

other sign of resonant character. Note finally that the strong maximum of the total electron signal 

shown in Fig. 9(d) at ε≈–0.945 coincides with a weak local maximum of the outer image radius (see 

Fig. 10(c)), but there is no apparent fringe number change in the corresponding image (not shown). 

Furthermore, for the weak total electron signal maximum at ε≈–0.88 seen in Fig. 9(d), neither the 

image nor its outer inflection point radius is affected. This behavior may stem from the very low 

fringe contrast or from the employed field strength, upon which, as mentioned above, the 

appearance of the resonant image critically depends [21]. Another possible explanation, however, 

may involve the larger core-penetration exhibited by the m=0 states as compared to the |m|=1 ones. 

That is, while for non-core-penetrating states a manifestation of the resonant character in the images 

and their outer radii is always accompanied by a maximum in the total electron signal, the reverse is 

not always true for core-penetrating states. This is a noticeable difference between the |m|=1 and 

m=0 data, as revealed by the comparison between Figs. (7) and (10). Nevertheless, the very fact that 
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core-penetrating quasi-bound states may, under certain conditions, manifest themselves in wave 

function imaging is quite encouraging. 

Wave packet calculations for m=0 were also performed at a fixed value of F=1000 V/cm 

and in the energy range shown in Fig. 10. Although the search for distributions showing resonant 

effects was not exhaustive, just two resonant distributions were found, one of them with res
1n =2. 

However, the location of this res
1n =2 distribution differs by about Δε=0.03 (≈6 cm-1) from the 

experimental one. By red-shifting all computed (resonant and non-resonant) distributions by this 

energy difference we obtain a fairly satisfactory agreement with the experiment (see Fig. 10(a)), 

particularly if we take into account the finite spatial resolution of the detector. 

 

 

V. SYNOPSIS AND OUTLOOK 

 

We have presented a photoionization microscopy study on the lithium atom, which, along 

with the by now well-known non-resonant effects, revealed signatures of quasi-bound states on the 

obtained images. The recording of the projections of quasi-discrete electronic states (n1, n2, m) 

constitutes the realization of a wave function microscopy experiment proposed about thirty years 

ago [11,12]. The most persistent resonant manifestation was found to be the non-classical evolution 

of the image radius related to the on-resonance broadening of the outer image ring [12,19,25]. The 

latter is associated to electron tunneling through the barrier of V2(η) and carries information on its 

presence near the ionic core. Indeed, almost every classically unexpected behavior of the outer 

image radius discovered in the present work may be associated with a resonance. On the other hand, 

although on-resonance changes of the number of dark fringes have been also observed, the quasi-

bound states did not dominate the interference patterns, at least not to the degree that it was 

theoretically predicted [12] and experimentally observed [24] in the hydrogen atom. This lower 

resonant fringe contrast with respect to the hydrogenic case is essentially attributed to the presence 

of the non-hydrogenic Li+ ionic core. The core scatters a fraction of the resonant flux to continuum 

electron waves and modifies the weights of each wave in the coherent sum related to the recorded 

image in favor of these continuum waves. Nevertheless, a portion of the resonant flux survives and 

the resonant contribution to the recorded images appears to be “superimposed” with the continuum 

contribution, the latter being always present. The experience gained so far on small atoms like Li 

and He [27] could guide the design of experiments where these atoms could be photoionized under 

more complex conditions, for example under the simultaneous presence of electric and magnetic 

fields [45]. 
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Both experimental data and theoretical calculations based on the wave packet propagation 

approach showed the existence of resonances exhibiting the above-mentioned specific characters. A 

fully quantitative comparison between theory and experiment was, however, hindered mainly by a 

poor knowledge of the field strength. For the latter, a level of relative precision far better than ~1% 

is evidently required. On the other hand, matching quantitatively theoretical and experimental 

resonant and non-resonant radial distributions may offer the opportunity in the future to determine 

the field strength with much higher precision, comparable perhaps to that of other proposed 

methodologies [46]. To this end, it would probably be preferable to employ different, time-

independent and less time-consuming, theoretical approaches, capable of predicting resonant 

images in non-hydrogenic atoms such as the Alkali atoms [20,22,28] and xenon [19]. Nevertheless, the 

wave packet propagation approach is highly valuable in connection with foreseeable time-resolved 

experiments aimed at an investigation of tunneling ionization dynamics and the corresponding 

buildup of the squared modulus of the wave function. 

Finally, it seems that it is now the time to envision possible extensions of photoionization 

microscopy, for obtaining information on the wave function’s phase, apart from its modulus. To this 

purpose, the technique will probably have to incorporate weak measurement concepts [6,7], 

employed so far solely for photons [8] but not yet for massive particles and atomic systems. This 

type of measurements would evidently require modifications of the photoionization microscope 

design, and, most probably, time-dependent information as well as novel theoretical developments. 

Therefore, we may anticipate with enough confidence, that despite the fact photoionization 

microscopy is already ~15 years old, the topic is still at its infancy and more fruitful advances are 

yet to come. 
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Figures 

 

 

 
 

Fig. 1. (Color online) Wave function microscopy aims at observing the spatial structure of the 

electronic wave function. (a) The electron flux stemming from the photoionization of an atom in the 

presence of a static electric field is recorded perpendicularly to the field and at macroscopic 

distance, i.e. approximately along a given constant η=ηο paraboloid. (b) and (c) The image 

corresponds to the squared modulus of the wave function along the ξ-coordinate where the electron 

motion is always bound. In (b) the nodes of the wave function are clearly observed in the example 

shown (with x and y denoting the detector plane), recorded with F≈1 kV/cm and electron excitation 

energy exceeding cl
spE  by 10 meV. Depending on the electron energy with respect to the maximum 

of the η-potential, the classical electron motion may be either bound (d) or free (e). In the former 

case the electron can escape solely via tunneling and the image corresponds to a direct macroscopic 

projection of a quantum standing wave characterizing the quasi-bound electronic state ( res
1n , res

2n , m) 

where the electron is initially localized within the inner η-potential well. 
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Fig. 2. Parabolic n1-channel threshold energies 1n
thrE  as a function of the strength of the static 

electric field, for Z=1, m=0 and quantum numbers n1=0-22. The thresholds are given in terms of the 

dimensionless energy parameter ε cl/ spEE= , where the classical saddle point energy (corresponding 

to ε=–1) is cl
spE =–2·F1/2 a.u.≈–6.121[F(V/cm)]1/2 cm-1. The thresholds were determined by solving 

the equation E=–2[Z2(E,F,m,n1)·F]1/2, where the separation constants Z2(E,F,m,n1)=Z–Z1(E,F,m,n1) 

were computed by solving the Coulomb/Stark Schrödinger equation along the ξ-coordinate. 
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Fig. 3. Classical separation constant Z1=Z⋅cos2(β/2) (with Z=1) (continuous line) as a function of the 

electron’s launch angle β and the quantized quantum mechanical values 0≤ 1
1
nZ ≤Z (drawn by 

horizontal line segments whose length is irrelevant), obtained by solving the Coulomb/Stark 

Schrödinger equation along the ξ-coordinate for the (ε=E/| cl
spE |, F, m) set given in the plot. A few 

selected parabolic quantum numbers n1 are provided next to the corresponding line segments. Also 

shown by vertical lines, are the critical angles βc and βo, separating the regions related to quasi-

bound states, indirect and direct contributions (see text), as well as the classical radius of impact on 

the detector (dashed line), computed as described in [39]. 
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Fig. 4. Energy evolution of m=0 (linear laser polarization parallel to the electric field axis) 

experimental images for an electric field F=1000±10 V/cm, as estimated by fitting the higher 

energy indirect radii to the expression c
maxR (E)=C·[E+| cl

spE |]1/2 [39]. The corresponding ε=E/| cl
spE | 

values are indicated below each image. For a number of images near ε=εdir≈–0.775, the indirect 

contribution is quite faint and hardly observable. All measurements performed for an identical 

number of laser shots. However, the linear greyscale of each image is individually normalized 

between 100% (black) and 0% (white). 
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Fig. 5. Same as in Fig. 4 but for |m|=1 images (linear laser polarization perpendicular to the electric 

field axis). (a) Recorded images at some selected reduced energies ε=E/| cl
spE | for an estimated field 

of F=1000±10 V/cm. (b) Experimental (continuous line) radial distributions for three selected 

values of ε, along with the corresponding wave packet calculations (dashed line) at the above field 

strength. 
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Fig. 6. (Color online) Experimental maximal radii of the indirect contribution ( c
maxR , black circles) 

and of the direct one (RI, white circles) for a |m|=1 series of images, recorded in the presence of an 

estimated static field F=1000 ± 10 V/cm and shown as a function of E and ε=E/| cl
spE |. Encircled are 

the c
maxR  data exhibiting a non-classical behavior which signals electron escape via tunneling. c

maxR  

is fitted to the expression c
maxR (E)=C·[E+| cl

spE |]1/2 [39], by retaining either the full set of data (dashed, 

black thin line) or the E≥–170 cm-1 one (continuous, dark cyan(dark grey) heavy line). The orange 

(light grey) heavy line curve stands for the numerically computed energy dependence of RI, which 

is subsequently matched in amplitude and energy to the experimental points. For the fitted values 

see the text. 
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Fig. 7. Experimental radial distributions (a), images (b), outer radii as defined in the text (c), and 

total integrated electron signal (d), in the vicinity of the saddle point energy for |m|=1. The quoted 

values of ε=E/| cl
spE | are computed using the value cl

spE =–186±1 cm-1 determined by a fit to the high 

energy points of the ( )ER c
max  curve of Fig. (6) (dashed line in (c)). In (a) each experimental 

distribution is up-shifted proportionally to the energy. Identified resonances are drawn with white 

circles and, as compared to (c) and (d), some distributions and images are omitted for clarity. The 

small vertical arrows for the highest three distributions given in (a) denote the corresponding outer 

radii. In (c) and (d) experimental points are connected with a smooth solid line to guide the eye. 
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Fig. 8. (Color online) Theoretically computed distributions, obtained by the wave packet 

propagation method for |m|=1 and F=1000 V/cm. The middle resonant ( res
1n =2,n2,|m|=1) distribution 

at ε=–0.944, resembles the experimental one recorded at ε=–0.953. For a discussion of the energy 

difference see the text. 
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Fig. 9. (color online) (a) Measured |m|=1 photoelectron images obtained in the presence of an 

F≈1000 V/cm field below a resonance (ε≈–0.815), on-resonance (ε≈–0.789) and above this 

resonance (ε≈–0.763). (b) Radial distributions of the images of (a). The radius (whose size on the 

detector is~6 mm) is scaled to c
maxR  [39]. Due to tunneling ionization through the barrier of V2(η) the 

radius of the resonant image (black continuous curve), is larger than the radii of both non-resonant 

images, at lower (red (light grey)-dashed-dotted line) and higher (blue (dark grey)-dashed line) 

photon energies. 
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Fig. 10. Same as in Fig. 7 but for m=0. The quoted values of ε=E/| cl
spE | are computed using the value 

cl
spE =187±1 cm-1, determined by a fit to the high energy points of the corresponding ( )ER c

max  curve 

(dashed line in (c)). Data drawn with white open circles denote the identified resonance. 

Theoretically computed distributions, obtained by the wave packet propagation method, are drawn 

in (a) with dashed lines. All theoretical curves are red-shifted in energy by Δε≈0.03 and each curve 

was appropriately scaled in amplitude in order to match the corresponding experimental maximum. 

In (c) and (d) experimental points are connected with a smooth solid line to guide the eye. 
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