Skip to Main content Skip to Navigation
New interface
Journal articles

Hollow Rims from Water Drop Evaporation on Salt Substrates

Abstract : We report on the observation of thin salt shells that form at the periphery of evaporating pure water drops on salt. Shell shapes range from rings of inclined walls to hollow toroidal rims. We interpret this phenomenon as a consequence of a molecular coffee-stain effect by which the dissolved salt is advected toward the pinned contact line where an increased evaporation takes place. The subsequent salt supersaturation in the vicinity of the triple line drives the crystallization of the shell at the liquid-air interface. This interpretation is supported by a simple model for shell growth.
Document type :
Journal articles
Complete list of metadata
Contributor : Depot 3 Lyon 1 Connect in order to contact the contributor
Submitted on : Tuesday, May 17, 2022 - 8:41:01 AM
Last modification on : Tuesday, November 29, 2022 - 10:13:23 AM
Long-term archiving on: : Monday, October 3, 2022 - 1:30:49 PM


Publisher files allowed on an open archive




Alexandra Mailleur, C. Pirat, Olivier Pierre-Louis, Jean Colombani. Hollow Rims from Water Drop Evaporation on Salt Substrates. Physical Review Letters, 2018, 121 (21), pp.214501. ⟨10.1103/PhysRevLett.121.214501⟩. ⟨hal-02290270⟩



Record views


Files downloads