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Abstract:  

The optical response of silver clusters, Agn with n = 8, 20, 35, 58, 92, embedded in a 

rare-gas matrix are calculated in the framework of the Time-Dependent Density Functional 

Theory (TDDFT). We present a methodology able to reproduce with unprecedented accuracy 

the experimental spectra measured on metal clusters embedded in neon, argon, krypton and 

xenon solid matrices. In our approach, the metal cluster is surrounded by explicit rare-gas atoms 

and embedded in a polarizable continuum medium. Interactions with the surrounding medium 

affects both the position and the width of the surface plasmon absorption band of metal clusters. 

The size dependent shift of the surface plasmon band is evaluated in the case of a neon matrix. 

While the band shifts to lower energies (red shift) for large clusters, it shifts to higher energies 

(blue shift) for very small clusters.  

 
  



1. Introduction 

 

Noble metal nanoparticles are characterized by unique optical properties, so called 

localized surface-plasmon resonances (LSPRs), with potential applications in biology sensing1, 

cancer therapy2, optoelectronic devices, photocatalysis and photovoltaics3, etc. LSPRs are 

collective excitations of the conduction electrons that cause a strong absorption band in the UV-

visible domain in the case of coinage metals. The LSPR frequencies can be tuned through the 

shape, size and composition of the nanoparticles4,5. For silver, the plasmon-like behavior is 

visible down to small cluster sizes of about 18-20 atoms6.  

While the LSPR is an intrinsic property of the metal cluster and could be investigated 

in gas phase7, the experimental photoabsorption studies are frequently carried out on clusters in 

interaction with their environment, i.e. in solution8 or in solid matrix9, in order to control the 

stability and obtain a high density. These interactions are complex and poorly understood while 

they may have important effects on the optical response. Several transparent matrix materials 

such as photosensitive glass10, alumina11, silica12,13 and Si3N4 
14 has been reported over a wide 

size range from few nm to a few hundred nm of diameter. Silver nanoparticles and nanoclusters 

have also been embedded in rare-gas matrices at low temperature15-19. Though the rare-gas 

matrices are relatively inert, and are more appropriate to characterize the intrinsic properties of 

clusters, some matrix effects on spectra are expected. They can be rationalized in two main 

competing effects20: the dielectric screening for the electron–electron interaction involves a 

redshift of the plasmon frequency as the dielectric constant of the matrix increases21, while a 

confinement of the valence electrons of the cluster due to the presence of the rare-gas atoms 

may lead to a blue-shift for small clusters22. A more detailed discussion about the matrix effects 

can be found in Ref [20]. As both dielectric effects and confinement effects is expected to be 

size-dependent, the shift of the LSPR absorption band may present a size-dependent character. 

However in the case of Agn clusters with n=2-39, Fedrigo et al16,17 have observed that the energy 

shift caused by changing the matrix gas is relatively independent of the cluster size, they 

measured a redshift of 0.22 eV (Ar Xe) and 0.13 eV (Kr  Xe) for clusters of n=7-21 atoms. 

Based on the classical Mie approach with a two-domain dielectric function describing a 

spherical particle embedded in a medium, they have calculated that the plasmon-like band in 

silver clusters was likely to be red shifted by 0.24 / 0.32 / 0.42 eV when the clusters are 

embedded in an argon/krypton/xenon matrix with respect to the gas phase, in correct agreement 

with their experimental data. They concluded that changing the matrix gas Ar→Kr→Xe 

induces a redshift which is comparable for all sizes studied and does not affect the main 



structure of the absorption spectra. To compare measurements made using different matrices, 

or to obtain the corresponding resonance energies in vacuum, the experimental data are often 

simply shifted by a constant value, estimated from the dielectric constants, for example plasmon 

bands measured in argon was shifted by 0.24 eV 17 or 0.29 eV 4. 

Optical absorption spectra for silver clusters embedded in helium nanodroplets23-25 and 

argon nanodroplets26 have been reported too. Particularly, the optical spectra of rare gas-doped 

silver clusters in a helium droplet, Ag8RGN@Hedroplet, have showed that the doping with 

RG=Ar, Kr, Xe leads to a shift of the mean resonance position which depends on the nature and 

the number N of attached atoms24. However, in all cases the shift with respect to free Ag8 is 

inferior to 0.1 eV. So the medium’s effect is lower when the cluster is embedded in a droplet 

that it is when the cluster is inside a solid matrix, in agreement with the fact that a larger 

dielectric constant is measured for a matrix than for a droplet24. 

 The calculation of photoabsorption spectra for intermediate-size metal clusters can 

nowadays be performed in the framework of the Time-Dependent Density Functional Theory 

(TDDFT),27 provided that an appropriate density functional is used28-30. For silver clusters, the 

description of excited states requires a correction of the self-interaction error (SIE) 31, and a 

correct asymptotic behavior30. The best results have been obtained with range separated hybrid 

functionals which resolve a significant part of the self-interaction-error (SIE) problems and also 

improve the asymptotic behavior at long range thanks to the inclusion of the Hartree-Fock 

exchange32. However having good predictions on metal clusters containing more than few 

thousand of electrons is still challenging. As an explicit treatment of both s- and d-electrons is 

required for noble metal clusters, simulations on a system of more than few hundred atom is 

only possible using geometrical structures of high symmetry.  

In the past few years, a great work has been dedicated to the study of electronic, 

magnetic and optical properties of bare silver clusters28-33 without taking account their 

environment. Simulations taking into account the matrix effects remain challenging even for 

small-size clusters. To our knowledge, only few papers have considered noble metals 

surrounded by rare gas. The weak interactions of rare gas atoms with small silver clusters (Agn, 

n=2-8) and their effects on the optical spectra have been evaluated at TDDFT level through an 

explicit treatment of few surrounding rare gas atoms34,35. The matrix effects of a rare-gas matrix 

on the spectra of small silver clusters (Agn, n = 2, 4, 6, 8, 20), were estimated using an 

electrostatic model of solvation (the conductor-like screening model of solvation (COSMO) 

model) in TDDFT/GGA calculations36. Compared to the gas phase, an average red-shift of 0.17, 

0.20, and 0.26 eV of the main peaks in argon, krypton, and xenon matrices respectively were 



obtained. The average shift was calculated at 0.06 eV for Xe  Kr and 0.09 eV for Xe  Ar, 

underestimating the experimental values of 0.13 and 0.22 eV respectively17. More reliable 

results would need to adopt a more refined embedding model22, or to explicitly include rare gas 

atoms in the calculations. Very recently, Xuan and Guet37 have studied the environment effect 

induced by a rare-gas matrix on silver Agn clusters with closed shell number of electrons (n = 

8, 20, 58, 92, 138, 198) within a modified random phase approximation with exact exchange 

quantum approach. The model, which not considers explicitly the geometrical structure, treats 

the polarization by the embedding rare-gas medium and that by the silver core on equal footing 

using an appropriate core-polarization term. A significant red shift of the oscillator strength 

peak was found due to matrix screening on the dipole term of the two-body Coulomb 

interaction. 

Here we investigate the absorption spectra of silver clusters embedded in a rare gas 

matrix. We present a methodology in which the metal clusters is surrounded by explicit rare-

gas atoms and embedded in a polarizable continuum medium. Optical response is calculated in 

the TDDFT approach. The present paper is organized as follows: In Section 2, we describe our 

theoretical approach which aims to mimic the experimental conditions where preformed metal 

clusters are embedded inside an amorphous rare-gas matrix6,15-19, then in Section 3 our results 

are discussed and compared to available experimental data.  

 

 

2. Computational method 

 

In our DFT and TDDFT calculations we explicitly include 100 rare gas atoms around 

the silver cluster, and the AgnRG100 cluster is placed inside a cavity surrounded by a dielectric 

medium described by a dielectric function through a polarizable continuum model (PCM).38 In 

details, calculations have been performed as follows. First we optimize the structure of the 

cluster AgnRG100 placed in a dielectric medium characterized by the dielectric function of the 

solid rare gas RG = Ne, Ar, Kr, or Xe. The dielectric constants, 𝜀𝑁𝑒 = 1.5, 𝜀𝐴𝑟 = 1.7, 𝜀𝐾𝑟 =

1.9, and 𝜀𝑋𝑒 = 2.22 were taken from Ref [39], they are very similar to the values used in 

previous investigations17,24,36,37. In Figure 1, we show the dependence on the dielectric constant 

of the absorption spectrum for Ag20 embedded in neon matrix. As expected the plasmon-like 

band is red shifted with increasing 𝜀. The band that is centered at 3.97 eV in gas phase, shifts 

to 3.95, 3.86, 3.80, 3.75, and 3.70 eV for 𝜀𝑁𝑒 = 1.1, 1.3, 1.5, 1.7, 1.9 respectively. The value of 

1.5 leads to a very good agreement with the experimental data of 3.83 eV 19. Another effect of 



the matrix is the broadening of the band which is relatively independent of the 𝜀𝑁𝑒 value. Some 

details on the treatment of the silver-neon interface are given in Supporting Information. Using 

100 Ne buffer atoms allows us to form a fully complete shell surrounding Ag92. Figure S1 

(Supporting Information) shows that a single complete shell is required and sufficient to 

correctly describe the interface. 

The geometrical structures of Ag35, Ag58 and Ag92 were taken from a study by Chen et 

al40 dedicated to the prediction of structures of silver clusters using a genetic algorithm with an 

embedded atom method potential, while the structure of Ag20 is the ground state structure of Cs 

symmetry optimized at DFT level in Ref [6]. Of course we cannot be sure that a more stable 

cluster than those considered in our calculations does not exist, but our tests show that the 

spectra characterized by a plasmon-like band are only weakly dependent on the exact 

geometrical structure as long as the shape is somewhat spherical. The initial position of rare-

gas atoms around the metal cluster was generated by a homemade program in order to obtain 

an amorphous arrangement. Then the structure of AgnRG100 was optimized using the ωB97xD 

functional41 which includes 100% exchange Hartree-Fock at long range and an empirical 

dispersion term. Finally TDDFT absorption spectra are calculated with the hybrid functional 

ωB97x42  within the solvent reaction field.  

We think that the methodology is suitable to describe the experimental protocol where 

preformed and size-selected Agn clusters are codeposited with rare gas atoms at low-energy on 

a window cooled at few kelvin (~5-10K), resulting into an amorphous rare gas matrix in which 

metal clusters are embedded 6,16,17. 

All calculations were performed with the Gaussian09 suite of programs43. Pre- and 

postprocessing operations were performed by using the graphical interface Gabedit44. For 

silver, a relativistic effective core potential (RECP) was used, so that only 19 valence electrons 

per atom were treated explicitly, together with the corresponding Gaussian basis set45. For Ne 

and Ar atoms, we use the 6-311++G basis set from the G09 basis set library. For Kr and Xe, we 

used a RECP together with the corresponding basis set45 to which we added a s and p type 

diffuse function (coefficients 0.06 and 0.07 for Kr, 0.04 for Xe). However very similar spectra 

have been obtained using the 6-311++G basis set. Spectra presented in the figures are plotted 

with a Lorentzian broadening (fwhm = 0.08 eV). 

 

 



 

 

 

 

Figure 1. Absorption spectrum of Ag20 in a neon matrix calculated with several 

dielectric constants (1.1 – 1.9) together with the spectrum calculated in the gas phase 

(green line) and the experimental spectrum in neon matrix19 (black line). On the right, 

a scheme of the model showing Ag20 surrounded by 100 rare-gas (RG) atoms while 

the effects of the more distant atoms are modeled via a dielectric medium characterized 

by the dielectric function 𝜀𝑅𝐺. 

 

 

 

3. Results and Discussion 

 

3.1 Ag20 in rare-gas matrix 

 

Our calculated absorption spectra for Ag20 embedded in Ne, Ar, Kr, and Xe matrices are 

given in Figure 2. For Ne and Ar matrices, we also show the experimental spectrum6,19. To our 

knowledge, no experimental data are available for Ag20 in Kr and Xe matrices. However, we 

give in Figure 2, in dashed curves, the spectrum of Ag21 that were measured by Fedrigo et al.17. 

Spectra of Ag20 and Ag21 measured in Ar were found to be very similar6, and we think that it 

should be the same in Kr and Xe matrices. Figure 2 shows that our results are clearly in very 

good agreement with the experiment. For Ag20 in Ne, the experimental band is centered at 

3.83 eV and was fitted by three Gaussian functions at 3.68, 3.79 and 3.87 eV 19. In our 

calculation, several peaks scattered in the 3.7-3.83 eV range leads to a central band at 3.81 eV, 

with a shoulder at 3.92 eV and a smaller peak at 3.51 eV. The calculated spectrum for Ag20 in 

Ar present several peaks between 3.66 and 3.83 eV, followed by a large intensity peak at 3.87 

eV. The agreement with the experiment is also good but the shoulder at 4 eV is not reproduced, 

it could correspond to the calculated transition at 3.87 eV. Spectra for Ag20 in Kr and Xe present 



a large band made of several peaks well scattered between 3.3 and 3.8 eV, the band extends at 

low energies down to 3 eV. They are somewhat similar to the experimental spectra of Ag21 

although the band is slightly wider.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Calculated absorption spectra (in red) of Ag20 in Ne, Ar, Kr and Xe matrices 

compared to the experimental spectrum of Ag20 in Ne and Ar (black line) [6,19] and 

that of Ag21 in Kr and Xe (dashed curve) [17].  

 

 

 

The plasmon band of Ag20, centered at 3.97 eV in phase gas, shifts to 3.80, 3.76, 3.66, and 

3.56 eV for Ne, Ar, Kr, Xe matrices respectively. Hence we calculated a red shift by changing 

the matrix gas of 0.2 eV (Ar  Xe), 0.1 eV (Kr Xe) and 0.1 eV (Ar  Kr). These values are 

in good agreement with the experimental shifts measured17 at 0.22 eV (Ar Xe),  0.13 eV (Kr 

 Xe), 0.09 eV ((Ar  Kr). The good agreement between our predictions and the experimental 

data clearly validates our results and our methodological approach. 

In our methodology, we chose to place explicitly 100 rare gas atoms between the metal 

cluster and the area described by the continuum media. In Figure 3, we show the need to treat 

explicitly a layer of rare gas atoms. When the metal is placed directly in contact with the 



continuum media described the dielectric constant, the plasmon band becomes strongly 

broadened and asymmetric. The presence of the continuum medium in contact to silver atoms 

leads to an inhomogeneous fragmentation of the plasmon. Explicit rare gas atoms around the 

metal cluster serve as a buffer zone and their presence reduces the unexpected effects. 

 

 

 

Figure 3. Calculated absorption spectra of Ag20 in gas phase or in Ne, Ar, Kr and Xe 

matrix. a) Left: Spectra calculated with 100 rare gas atoms explicitly around the metal 

cluster, b) Right: Spectra calculated for Ag20 directly in the dielectric medium without 

explicit rare gas atoms. 

 

 

 

3.2 Agn in Ne matrix 

 

 We have simulated the absorption spectra of larger clusters in a neon matrix for which 

experimental data have recently been published19. The other matrices have not been considered 

because of lack of experimental results and also the high cost of calculation. In figure 4 we give 

our results for Ag35,58,92 surrounding by 100 Ne atoms and the polarizable continuum medium. 

The plasmon band is calculated to be centered at 3.79, 3.95, and 3.85 eV for Ag35, Ag58, Ag92 

respectively, in good agreement with the experimental data of 3.84, 3.93, 3.80 eV 19. For Ag35, 

the spectrum presents a relative wide band, composed of two humps calculated at 3.68 and 3.82 

eV respectively, and a shoulder at 3.93 eV followed by a smaller intensity peak at 4.22 eV. The 

band fits well the experimental spectrum which presents two humps at 3.70 and 3.94 eV 

respectively. For Ag58, the calculated spectrum is composed of a broad absorption band due to 

a strong dispersion of the oscillator strengths over the 3.5-4.5 eV energy range with no dominant 

peak. The calculated band is in good agreement with the experimental one, which presents a 

main peak at 3.94 eV and a shoulder at 3.64 eV 19, even if the shape of the band is not exactly 



reproduced. The calculated spectrum of Ag92 is very similar to the experimental one despite a 

shift of 0.05 eV. In particular, the narrow width is well reproduced and could be interpreted as 

a signature of a symmetrical structure, like the C3v-symmetry structure used in our calculation. 

The calculated plasmon band is centered at 3.86 eV. 

Compared to the spectrum calculated in gas phase, the red shift induced by the Ne matrix 

effects is relatively independent on the cluster size n in the range of n = 20 - 92. In a recent 

paper19, we have evaluated the red shift at 0.17 eV. In the present study, we have estimated the 

red shift for sizes n = 20, 35, 58, 92 with several configurations miming the Ne matrix. In all 

calculations, the red shift ranges between 0.14 and 0.19 eV, with a mean value close to 0.17 

eV. Using the density functional ωB97x and the basis set LanL2DZ45 on silver atoms for 

calculations in gas phase and in matrix, we have calculated a redshift of 0.17, 0.14, 0.17, and 

0.19 eV for n = 20, 35, 58, and 92 respectively. It is clear that the dielectric effects, responsible 

for the redshift, overcome the effects of confinement which, on the contrary, should lead to a 

blue shift. It is true at least until the small size of 20 atoms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Calculated absorption spectra (red curve) of Ag35,58,92 in a neon matrix 

compared to the experimental spectrum (black curve) taken from [19]. Structures of 

bare clusters are also depicted. 

 

 

 We have also studied a smaller cluster, Ag8, embedded in the Ne matrix in order to know 

if the red shift is still valid at very small size. The absorption spectrum of Ag8 in Ne matrix 



have been measured by Lecoultre et al.18, we plot it in Figure 5. It is composed of two intense 

transitions at 3.65 and 4.00 eV, and two small narrow peaks at 3.12 and 3.20 eV. It is now well 

known that two structures of symmetry D2d and Td (see Figure 5) compete for the lowest-energy 

isomer. The energy ordering is dependent of the density functional used18,20,46, while at 

CCSD(T) level the Td structure was predicted to be more stable within 0.03 eV 40. Using the 

ωB97x functional, the Td structure is also favored. Spectra for both structures are given in 

Figure 5. For Ag8 (Td) in Ne matrix, the calculation predicts an intense 3-fold degenerate peaks 

at 4.08 eV, and a second one at 3.18 eV. For Ag8 (D2d) in Ne matrix, the main transition is a 

doubly degenerate peak at 4.02 eV and a peak at 3.64 eV. Three experimental transitions (at 

3.12, 3.20, and 4.00 eV) could correspond to transitions calculated for the Td isomer (3.18 and 

4.08 eV), while two experimental peaks at 3.65 and 4.00 eV are well reproduced by transitions 

calculated for the D2d isomer at 3.64 and 4.02 eV. As previously suggested,6,20 both isomers 

could be present in the experiment, the experimental spectrum being then a sum of the spectra 

for both isomers. Interestingly, we compare in Figure 5 the absorption spectrum of Ag8 

calculated in Ne matrix and in gas phase. For the Td structure, spectra are nearly similar since 

the peaks are found at 3.22 and 4.05 eV in gas phase (compared to 3.18 and 4.08 in Ne matrix). 

So, the confinement effect overcomes dielectric effects resulting in a small blue shift of 0.03 

eV for the main band. For the D2d structure, the peaks in gas phase are calculated to be at 3.74 

and 4.00 eV respectively, compared to 3.64 and 4.02 eV in Ne matrix. The matrix affects 

differently the two peaks: the doubly degenerate peak near 4 eV is slightly blue shifted (by 0.02 

V), while the other is red shift by 0.1 eV. Actually these peaks come from the fragmentation of 

a unique 3-fold degenerate transition in a spherical nanoparticle and associated to a plasmon-

like resonance. The degeneracy can still be observed in the Td structure (transition at 4.08 V), 

but not in the D2d due to a spatial symmetry breaking and a lift of the degeneracy. If we consider 

the transitions at 3.74 and 4.00 eV of the D2d structure as a fragmented plasmon-like band, we 

obtained an average position of 3.89 eV by integrating the peaks, this average position is red 

shifted to 3.84 eV in Ne matrix. We plot in Figure 6 the induced density for the peaks at 3.74 

and 4.00 eV. The former corresponds to an excitation along the longitudinal axis (z-direction) 

of the D2d structure, while the latter corresponds to a motion along the short axis (x- and y-

direction). Electron motions are much more affected by the confinement when oscillations 

happen in transverse directions than in the longitudinal mode. Based on the atomic structure, 

one can model the cluster by a box with a long side of 4.5 Å and two short sides of 3.7 Å. An 

additional confinement due to the presence of the Ne atoms will have a greater impact for 

motions along the short axis. Consequently, the confinement effect is large enough to balance 



the dielectric effect and cancel the red shift for transverse modes (peak at 4.0 eV). On the 

contrary, for the longitudinal mode, the confinement is smaller, and the dielectric effects 

dominate resulting in a red shift of 0.1 eV. Then one can estimate that for clusters with a 

diameter > 4.5 Å (about 12-15 atoms), the matrix effects are mainly of dielectric nature and 

lead to a red shift. Also, it has been showed that calculations for Agn in gas phase, with n=4-

12, reproduce well the experimental data measured for clusters embedded in matrix28. That is 

also in line with the confinement effects roughly balancing the dielectric effects for n ≤ 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Calculated absorption spectra of Ag8 in a neon matrix (red curve) compared 

to the experimental spectrum (black curve) taken from [18]. Calculated spectra of Ag8 

in gas phase are given in green dashed curve. D2d and Td symmetry structures of bare 

clusters are also depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Plots of the induced density calculated for the peaks at 3.74 (left, longitudinal 

mode) and 4.00 eV (transverse modes) for the D2h structure of Ag8 in the gas phase. 

 

 

 

 



 

 

4. Conclusions 

 

The optical response of silver clusters embedded in a rare-gas (Ne, Ar, Kr, Xe) matrix 

have been calculated in the framework of the TDDFT. In our approach, the metal cluster was 

surrounded by explicit rare-gas atoms and embedded in a polarizable continuum medium. 

Interactions with the surrounding medium affects both the position and the width of the surface 

plasmon absorption band of metal clusters. The size dependent shift of the plasmon band have 

been studied in the case of a neon matrix. Our results have showed that for n = 20 – 92 the 

dielectric effects overcome the confinement, resulting in a redshift of about 0.17 eV without a 

significant size dependency, but the confinement effects balance the dielectric effects for small 

cluster (n = 8, and expected up to n  12) and cancel the redshift. Our results reproduce the 

experimental spectra with unprecedented accuracy. 
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