Skip to Main content Skip to Navigation
Journal articles

Nano-imaging of intersubband transitions in van der Waals quantum wells

Abstract : The science and applications of electronics and optoelectronics have been driven for decades by progress in the growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional materials and hold unexplored potential to overcome the aforementioned limitations—they form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve intersubband transitions with a nanometre-scale spatial resolution and electrostatically control the absorption. This work enables the exploitation of intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, light-emitting diodes and lasers.
Document type :
Journal articles
Complete list of metadatas

https://hal-univ-lyon1.archives-ouvertes.fr/hal-02289848
Contributor : Marie-Gabrielle Chautard <>
Submitted on : Tuesday, September 17, 2019 - 10:58:12 AM
Last modification on : Thursday, October 15, 2020 - 8:54:04 AM

Links full text

Identifiers

Collections

Citation

P. Schmidt, Fabien Vialla, S. Latini, M. Massicotte, K. J. Tielrooij, et al.. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nature Nanotechnology, Nature Publishing Group, 2018, 13, pp.1035-1041. ⟨10.1038/s41565-018-0233-9⟩. ⟨hal-02289848⟩

Share

Metrics

Record views

268