J. Brosius, Genomes were forged by massive bombardments with retroelements and retrosequences, vol.107, pp.209-238, 1999.

P. Medstrand, L. N. Van-de-lagemaat, C. A. Dunn, J. R. Landry, D. Svenback et al., Impact of transposable elements on the evolution of mammalian gene regulation, Cytogenet Genome Res, vol.110, pp.342-352, 2005.

L. N. Van-de-lagemaat, J. R. Landry, D. L. Mager, and P. Medstrand, Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions, Trends Genet, vol.19, pp.530-536, 2003.

A. E. Peaston, A. V. Evsikov, J. H. Graber, W. N. De-vries, A. E. Holbrook et al., Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos, Dev Cell, vol.7, pp.597-606, 2004.

I. K. Jordan, I. B. Rogozin, G. V. Glazko, and E. V. Koonin, Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends Genet, vol.19, pp.68-72, 2003.

G. Bourque, B. Leong, V. B. Vega, X. Chen, Y. L. Lee et al., Evolution of the mammalian transcription factor binding repertoire via transposable elements, Genome Res, vol.18, pp.1752-1762, 2008.

G. Kunarso, N. Chia, J. Jeyakani, C. Hwang, X. Lu et al., Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nat Genet, vol.42, pp.631-634, 2010.

H. M. Rowe and D. Trono, Dynamic control of endogenous retroviruses during development, Virology, vol.411, pp.273-287, 2011.

K. S. O'shea, Self-renewal vs. differentiation of mouse embryonic stem cells, Biol Reprod, vol.71, pp.1755-1765, 2004.

J. Nichols, B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-nebenius et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell, vol.95, pp.379-391, 1998.

A. A. Avilion, S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian et al., Multipotent cell lineages in early mouse development depend on SOX2 function, vol.17, pp.126-140, 2003.

I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, vol.113, pp.643-655, 2003.

S. J. Arnold and E. J. Robertson, Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo, Nat Rev Mol Cell Biol, vol.10, pp.91-103, 2009.

F. Lavial, H. Acloque, F. Bertocchini, D. J. Macleod, S. Boast et al., The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells, Development, vol.134, pp.3549-3563, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664396

K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami et al., The homeoprotein Nanog is

. Mey, Retrovirology, vol.2012, p.21

, required for maintenance of pluripotency in mouse epiblast and ES cells, Cell, vol.113, pp.631-642, 2003.

L. Hyslop, M. Stojkovic, L. Armstrong, T. Walter, P. Stojkovic et al., Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages, Stem Cells, vol.23, pp.1035-1043, 2005.

S. R. Hough, I. Clements, P. J. Welch, and K. A. Wiederholt, Differentiation of Mouse Embryonic Stem Cells after RNA Interference-Mediated Silencing of OCT4 and Nanog, Stem Cells, vol.24, pp.1467-1475, 2006.

M. Koutsourakis, A. Langeveld, R. Patient, R. Beddington, and F. Grosveld, The transcription factor GATA6 is essential for early extraembryonic development, Development, vol.126, pp.723-732, 1999.

C. Soudais, M. Bielinska, M. Heikinheimo, C. A. Macarthur, N. Narita et al., Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro, Development, vol.121, pp.3877-3888, 1995.

J. Fujikura, E. Yamato, S. Yonemura, K. Hosoda, S. Masui et al., Differentiation of embryonic stem cells is induced by GATA factors, Genes Dev, vol.16, pp.784-789, 2002.

H. Niwa, J. Miyazaki, and A. G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nat Genet, vol.24, pp.372-376, 2000.

E. Lerat, A. M. Birot, J. Samarut, and A. Mey, Maintenance in the chicken genome of the retroviral-like cENS gene family specifically expressed in early embryos, J Mol Evol, vol.65, pp.215-227, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434619

Y. Sekita, H. Wagatsuma, K. Nakamura, R. Ono, M. Kagami et al., Role of retrotransposonderived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta, Nat Genet, vol.40, pp.243-248, 2008.

A. Streit, A. J. Berliner, C. Papanayotou, A. Sirulnik, and C. D. Stern, Initiation of neural induction by FGF signalling before gastrulation, Nature, vol.406, pp.74-78, 2000.

H. Acloque, V. Risson, A. M. Birot, R. Kunita, B. Pain et al., Identification of a new gene family specifically expressed in chicken embryonic stem cells and early embryo, Mech Dev, vol.103, pp.79-91, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02673602

C. Papanayotou, A. Mey, A. M. Birot, Y. Saka, S. Boast et al., A mechanism regulating the onset of Sox2 expression in the embryonic neural plate, PLoS Biol, vol.6, p.2, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02662617

H. Acloque, A. Mey, A. M. Birot, H. Gruffat, B. Pain et al., Transcription factor cCP2 controls gene expression in chicken embryonic stem cells, Nucleic Acids Res, vol.32, pp.2259-2271, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02678518

C. J. Cohen, W. M. Lock, and D. L. Mager, Endogenous retroviral LTRs as promoters for human genes: A critical assessment, Gene, vol.448, pp.105-114, 2009.

M. Merika and S. H. Orkin, DNA-binding specificity of GATA family transcription factors, Mol Cell Biol, vol.13, pp.3999-4010, 1993.

R. J. Fisher, G. Mavrothalassitis, A. Kondoh, and T. S. Papas, High-affinity DNAprotein interactions of the cellular ETS1 protein: the determination of the ETS binding motif, Oncogene, vol.6, pp.2249-2254, 1991.

G. Sheng, M. Reis, and C. D. Stern, Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation, Cell, vol.115, pp.603-613, 2003.

R. Jauch, C. Ng, K. S. Saikatendu, R. C. Stevens, and P. R. Kolatkar, Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Factor Nanog, J Mol Biol, vol.376, pp.758-770, 2008.

E. Segal and J. Widom, Poly(dA:dT) tracts: major determinants of nucleosome organization, Curr Opin Struct Biol, vol.19, pp.65-71, 2009.

M. Rex, A. Orme, D. Uwanogho, K. Tointon, P. M. Wigmore et al., Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue, Dev Dyn, vol.209, pp.323-332, 1997.

C. Chazaud, Y. Yamanaka, T. Pawson, and J. Rossant, Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway, Dev Cell, vol.10, pp.615-624, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01923174

F. Bertocchini and C. D. Stern, The Hypoblast of the Chick Embryo Positions the Primitive Streak by Antagonizing Nodal Signaling, Dev Cell, vol.3, pp.735-744, 2002.

S. Haider, B. Ballester, D. Smedley, J. Zhang, P. Rice et al., BioMart Central Portal?Äîunified access to biological data, Nucleic Acids Res, vol.37, pp.23-27, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01615159

C. B. Lowe, G. Bejerano, and D. Haussler, Thousands of human mobile element fragments undergo strong purifying selection near developmental genes, Proc Natl Acad Sci, vol.104, pp.8005-8010, 2007.

L. Blanchon, J. L. Bocco, D. Gallot, A. Gachon, D. Lèmery et al., Co-localization of KLF6 and KLF4 with pregnancyspecific glycoproteins during human placenta development, Mech Dev, vol.105, pp.185-189, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01918622

D. Kenzelmann-broz, R. P. Tucker, and N. T. Leachman, Chiquet-Ehrismann R: The expression of teneurin-4 in the avian embryo: potential roles in patterning of the limb and nervous system, Int J Dev Biol, vol.54, pp.1509-1516, 2010.

H. Lee and P. Ms, Young WS: miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation, Proc Natl Acad Sci, vol.103, pp.15669-15674, 2006.

D. Yang, E. R. Smith, and K. Q. Cai, Xu X-X: c-fos elimination compensates for disabled-2 requirement in mouse extraembryonic endoderm development, Dev Dyn, vol.238, pp.514-523, 2009.

S. Chapman, K. Matsumoto, Q. Cai, and G. Schoenwolf, Specification of germ layer identity in the chick gastrula, BMC Dev Biol, vol.7, pp.91-107, 2007.

A. C. Laverriere, C. Macneill, C. Mueller, R. E. Poelmann, J. B. Burch et al., GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut, J Biol Chem, vol.269, pp.23177-23184, 1994.

K. Minko, K. Bollerot, C. Drevon, M. F. Hallais, and T. Jaffredo, From mesoderm to blood islands: patterns of key molecules during yolk sac erythropoiesis, Gene Expr Patterns, vol.3, pp.261-272, 2003.

S. A. Tahtakran and M. Selleck, Ets-1 expression is associated with cranial neural crest migration and vasculogenesis in the chick embryo, Gene Expr Patterns, vol.3, pp.455-458, 2003.

A. Albazerchi and C. D. Stern, A role for the hypoblast (AVE) in the initiation of neural induction, independent of its ability to position the primitive streak, Dev Biol, vol.301, pp.489-503, 2007.

D. M. Messerschmidt and R. Kemler, Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism, Dev Biol, vol.344, pp.129-137, 2010.

A. M. Singh, T. Hamazaki, K. E. Hankowski, and N. Terada, A Heterogeneous Expression Pattern for Nanog in Embryonic Stem Cells, Stem Cells, vol.25, pp.2534-2542, 2007.

I. Chambers, J. Silva, D. Colby, J. Nichols, B. Nijmeijer et al., Nanog safeguards pluripotency and mediates germline development, Nature, vol.450, pp.1230-1234, 2007.

M. A. Canham, A. A. Sharov, M. Ko, and J. M. Brickman, Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript, PLoS Biol, vol.8, p.1000379, 2010.

B. G. Debeb, V. Galat, J. Epple-farmer, S. Iannaccone, W. A. Woodward et al., Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines, PLoS One, vol.4, p.7216, 2009.

A. Huda, N. J. Bowen, A. B. Conley, and I. K. Jordan, Epigenetic regulation of transposable element derived human gene promoters, Gene, vol.475, pp.39-48, 2011.

T. S. Macfarlan, W. D. Gifford, S. Agarwal, S. Driscoll, K. Lettieri et al., Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/ KDM1A, Genes Dev, vol.25, pp.594-607, 2011.

E. Meshorer and T. Misteli, Chromatin in pluripotent embryonic stem cells and differentiation, Nat Rev Mol Cell Biol, vol.7, pp.540-546, 2006.

A. B. Conley, J. Piriyapongsa, and I. K. Jordan, Retroviral promoters in the human genome, Bioinformatics, vol.24, pp.1563-1567, 2008.

G. J. Faulkner, Y. Kimura, C. O. Daub, S. Wani, C. Plessy et al., The regulated retrotransposon transcriptome of mammalian cells, Nat Genet, vol.41, pp.563-571, 2009.

W. Pi, X. Zhu, M. Wu, Y. Wang, S. Fulzele et al., Longrange function of an intergenic retrotransposon, Proc Natl Acad Sci, vol.107, pp.12992-12997, 2010.

A. Pauli, J. L. Rinn, and A. F. Schier, Non-coding RNAs as regulators of embryogenesis, Nat Rev Genet, vol.12, pp.136-149, 2011.

A. M. Khalil, M. Guttman, M. Huarte, M. Garber, A. Raj et al., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression, Proc Natl Acad Sci, vol.106, pp.11667-11672, 2009.

. Mey, Retrovirology, vol.2012, p.21

T. G. Fazzio, J. T. Huff, and B. Panning, An RNAi Screen of Chromatin Proteins Identifies Tip60-p400 as a Regulator of Embryonic Stem Cell Identity, Cell, vol.134, pp.162-174, 2008.

A. Gaspar-maia, A. Alajem, F. Polesso, R. Sridharan, M. J. Mason et al., Chd1 regulates open chromatin and pluripotency of embryonic stem cells, vol.460, pp.863-868, 2009.

M. Caillier, S. Thenot, V. Tribollet, A. M. Birot, J. Samarut et al., Role of the Epigenetic Regulator HP1gamma in the Control of Embryonic Stem Cell Properties, PLoS One, vol.5, p.15507, 2010.

J. Schneikert, Y. Lutz, and B. Wasylyk, Two independent activation domains in c-Ets-1 and c-Ets-2 located in non-conserved sequences of the ets gene family, Oncogene, vol.7, pp.249-256, 1992.

H. Niwa, K. Yamamura, and J. Miyazaki, Efficient Selection for High-Expression Transfectants with a Novel Eukaryotic Vector, Gene, vol.108, pp.193-199, 1991.

H. Eyal-giladi and S. Kochav, From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick: I. General morphology, Developmental Biology, vol.49, pp.321-337, 1976.

V. Hamburger and H. Hamilton, A series of normal stages in the development of the chick embryo, J Morphol, vol.88, pp.49-92, 1951.

S. C. Chapman, J. Collignon, G. C. Schoenwolf, and A. Lumsden, Improved method for chick whole-embryo culture using a filter paper carrier, Dev Dyn, vol.220, pp.284-289, 2001.

H. Acloque, D. G. Wilkinson, M. A. Nieto, and D. Marianne-b-f, Situ Hybridization Analysis of Chick Embryos in Whole

T. Mount and . Sections, In Methods in Cell Biology, vol.87, pp.169-185, 2008.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends Genet, vol.16, pp.276-277, 2000.

P. Flicek, M. R. Amode, D. Barrell, K. Beal, S. Brent et al., Nucleic Acids Res, vol.39, pp.800-806, 2011.

. Mey, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution, Retrovirology, vol.9, p.21, 2012.