Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and gamma-ray Scintillators - Université Claude Bernard Lyon 1 Accéder directement au contenu
Article Dans Une Revue Crystals Année : 2019

Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and gamma-ray Scintillators

Résumé

Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce3+ , Pr3+ and Nd3+ lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu3+ doped SrI2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators
Fichier principal
Vignette du fichier
crystals-09-00088-v2.pdf (9 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02285858 , version 1 (10-12-2020)

Identifiants

Citer

F. Maddalena, L. Tjahjana, A. Z. Xie, S. W. Zeng, H. Wang, et al.. Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and gamma-ray Scintillators. Crystals, 2019, 9, pp.88. ⟨10.3390/cryst9020088⟩. ⟨hal-02285858⟩
55 Consultations
140 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More