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ABSTRACT

Self-similarity has been widely used to model scale-free dynamics,

with significant successes in numerous applications that are very dif-

ferent in nature. However, such successes have mostly remained

confined to univariate data analysis while many applications in the

modern “data deluge” era involve multivariate and dependent data.

Operator fractional Brownian motion is a multivariate self-similar

model that accounts for multivariate scale-free dynamics and charac-

terizes data by means of a vector of self-similarity exponents (eigen-

values). This naturally raises the challenging question of testing the

equality of exponents. Expanding on the recently proposed wavelet

eigenvalue regression estimator of the vector of self-similarity expo-

nents, in the present work we construct and study a wavelet domain

bootstrap test for the equality of self-similarity exponents from one

single observation (time series) of multivariate data. Its performance

is assessed in a bivariate setting for various choices of sample size

and model parameters, and it is shown to be satisfactory for use on

real world data. Practical routines implementing estimation and test-

ing are available upon request.

Index Terms— multivariate self-similarity, operator fractional

Brownian motion, wavelet spectrum, bootstrap, hypothesis testing

1. INTRODUCTION

Context: univariate self-similarity. Self-similarity [1] provides

a framework for describing and modeling scale-free dynamics. It

has been widely used and lead to well-recognized successes in nu-

merous real world applications that are very different in nature (cf.,

e.g., [2–4] and references therein). Fractional Brownian motion

(fBm) is the only Gaussian stationary increment self-similar pro-

cess [5]. It has often been used to describe real world data, and

offers a robust and versatile model whose dynamics are mainly

governed by a unique self-similarity parameter H . In practice,

the estimation of the latter parameter is naturally the central chal-

lenge. Knowledge of H permits carrying out various classical signal

processing tasks such as characterization, diagnosis, classification,

detection, etc. It is now well documented and widely accepted that

the wavelet transform provides efficient multiscale representations

and allows for theoretically well-grounded, robust and accurate esti-

mation of H [2, 6]. However, such successes have remained mostly

limited to univariate analysis. Modern applications often involve

several joint time series, which calls for adequate multivariate self-

similarity modeling.
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Related work: multivariate self-similarity. Recently, oper-

ator fractional Brownian motion (ofBm), a multivariate exten-

sion of fBm, was proposed as a model for multivariate self-

similarity [7–10]. In particular, it allows multiple correlated fBm

coordinate processes with possibly distinct self-similarity expo-

nents Hm, m = 1, . . . ,M , and occurring in a non-canonical set

of coordinates (mixing). A statistical procedure was recently de-

vised for jointly estimating the vector of self-similarity exponents

H = (H1, . . . , HM ) [4, 11, 12]. Based on multivariate wavelet

representations and eigenvalue decompositions, the method was

mathematically studied and shown to have satisfactory theoretical

and practical performance. Its actual use on real world data naturally

raises a crucial question for data analysis or experimental interpre-

tation — are all self-similarity exponents (H1, . . . , HM ) different

or identical? This question has never been addressed, except in the

restricted setting [13]. In addition, it should be noted that the design

of hypothesis tests in multivariate self-similarity contexts has to

cope with the notorious intricacy of asymptotic estimator covariance

matrices [14]. This work aims to provide the first and preliminary

answer to this question in the wavelet domain.

Goal, contributions and outline. By making use of wavelet

eigenvalue-based estimation for H , the present work devises, stud-

ies and assesses a bootstrap-type test for the hypothesis H1 = H2

starting from one single observation (time series) of bivariate data.

For the reader’s convenience, bivariate ofBm is briefly developed

in Section 2. After recapping the wavelet eigenvalue regression

estimator of H , Section 3 defines the new bootstrap-based testing

procedure. In Section 4, Monte Carlo experiments involving a large

number of independent copies of ofBm show that the proposed

method permits effective testing of the hypothesis H1 = H2 from

a single observation (time series). The performance of the test is

characterized with respect to sample size and model parameters,

notably the self-similarity exponents H and the Pearson correlation

of the data. OfBm synthesis and self-similarity exponent estimation

and testing are carried out by means of newly designed MATLAB

routines.

2. OPERATOR FRACTIONAL BROWNIAN MOTION

The ofBm model was introduced and developed in general settings

in [7–10]. It is a natural multivariate extension of fBm consisting

of a multivariate Gaussian self-similar process with stationary incre-

ments. For ease of exposition of the principle behind the bootstrap

test, the presentation is restricted to a bivariate and time reversible

setting [9].

Let X ≡ {BH1
(t), BH2

(t)}t∈R be a pair of fBm components

defined by their self-similarity exponents H = (H1, H2), 0 <



H1 ≤ H2 < 1 and a pointwise covariance matrix ΣX with en-

tries (ΣX)m,m′ = σmσm′ρm,m′ , where σ2
1 , σ2

2 and ρ0 ≡ ρ1,2 are

the variance of each component and their respective correlation co-

efficients. Let P be a 2 × 2, real-valued, invertible matrix. In this

contribution, we consider the particular framework where (bivariate)

ofBm is defined by

Y ≡ {B
H,ΣX ,P
1 (t), B

H,ΣX ,P
2 (t)}t∈R = P{BH1

(t), BH2
(t)}t∈R

(in short, Y = PX). Bivariate ofBm is well-defined if and only if

Γ(2H1 + 1)Γ(2H2 + 1) sin(πH1) sin(πH2)
−ρ20Γ(H1+H2+1)2 sin2(π(H1+H2)/2) > 0, thus showing that

H and ρ0 cannot be selected independently [9].

Let H = Pdiag(H)P−1 be the so-named Hurst matrix parame-

ter, where H correspond to the Hurst eigenvalues. Multivariate self-

similarity, the key property of ofBm, reads as

{B
H,ΣX ,P
1 (t), B

H,ΣX ,P
2 (t)}t∈R

fdd
=

{aH(B
H,ΣX ,P
1 (t/a), B

H,ΣX ,P
2 (t/a))}t∈R, (1)

∀a > 0, where
fdd
= stands for the equality of finite dimensional distri-

butions, and aH :=
∑+∞

k=0 log
k(a)Hk/k!. When the mixing matrix

P is diagonal, namely, when we can set P ≡ I , the self-similarity

relation (1) takes the simple form of component-wise self-similarity

relations (see [15])

{B
H,ΣX ,I
1 (t), B

H,ΣX ,I
2 (t)}t∈R

fdd
=

{aH1B
H,ΣX ,I
1 (t/a), aH2B

H,ΣX ,I
2 (t/a))}t∈R. (2)

3. ESTIMATING H AND TESTING H1 = H2

3.1. Wavelet based joint estimation of H1 and H2

In statistical practice, the central task is to estimate the Hurst eigen-

values H = (H1, H2) from a single time series Y . When P is di-

agonal, (2) suggests that H1 and H2 can be estimated independently

using standard univariate methodologies [13, 15]. However, in the

general framework of nondiagonal mixing (coordinates) matrices P ,

univariate estimation does not yield relevant results. Instead, a mul-

tivariate wavelet transform-based joint estimation procedure can be

used, cf. [4, 11]; it is recalled next for the reader’s convenience.

Multivariate wavelet transform. Let ψ0 be an oscillating refer-

ence pattern with joint time and frequency localization, referred to as

the mother wavelet and further characterized by its so-named num-

ber of vanishing moments Nψ . The latter is a positive integer such

that ∀n = 0, . . . , Nψ − 1,
∫

R
tkψ0(t)dt ≡ 0 and

∫

R
tNψψ0(t)dt &=

0. Let {ψj,k(t) = 2−j/2ψ0(2
−jt − k)}(j,k)∈Z2 be the collection

of dilated and translated templates of ψ0 that forms an orthonormal

basis of L2(R).
The multivariate discrete wavelet transform (DWT) of the mul-

tivariate stochastic process {Y (t)}t∈R is defined as (D(2j , k)) ≡
DY (2j , k)=(DY1

(2j , k), DY2
(2j , k)), ∀k ∈ Z, ∀j∈{j1, . . . , j2},

and ∀m ∈ {1, 2}: Dym(2j , k) = 〈2−j/2
ψ0(2

−jt−k)|Ym(t)〉. For

a detailed introduction to wavelet transforms, interested readers are

referred to, e.g., [16].

Joint estimation of H1,H2. Let S(2j) denote the empirical

wavelet spectrum defined as

S(2j) =
1

nj

nj
∑

k=1

D(2j , k)D(2j , k)∗, nj =
N

2j
,

where N is the sample size. Let Λ(2j) = {λ1(2
j),λ2(2

j)} be

the eigenvalues of the 2 × 2 matrix S(2j). The wavelet eigenvalue

regression estimators (Ĥ1, Ĥ2) of (H1, H2) are defined by means

of weighted log-regressions across scales 2j1 ≤ a ≤ 2j2 [4, 11]

Ĥm =

(

j2
∑

j=j1

wj log2 λm(2j)

)

/

2−
1

2
, ∀m = 1, 2. (3)

Estimation performance. It was shown theoretically in [4, 11]

that (Ĥ1, Ĥ2) constitute consistent estimators with asymptotic joint

normality under mild assumptions. It was also shown that these es-

timators have very satisfactory performance for finite sample sizes.

Their covariances decrease as a function of the inverse of the sample

size and are approximately normal even for small sample sizes. It

was further observed that the variances of (Ĥ1, Ĥ2) do not signifi-

cantly depend on the actual values of (H1, H2).

3.2. Testing H1 = H2

Test formulation. The need to understand and analyze the data

structure and underlying stochastic mechanisms leads to the issue

of deciding whether or not H1 and H2 are equal. In other words,

it is of great practical interest to test the null hypothesis H1 = H2

against the alternative hypothesis H1 &= H2. A natural choice of test

statistic is δ̂ = Ĥ2 − Ĥ1.

In view of the asymptotic joint normality of (Ĥ1, Ĥ2), δ̂ can be

modeled as a zero mean Gaussian random variable, with unknown

variance. With the purpose of testing δ̂ = 0 from a single realization

of the process, we propose to estimate its unknown variance by a

bootstrap procedure [17, 18].

Bootstrap in the multivariate wavelet domain. To approximate

the distribution of δ̂, a bootstrap method in the multivariate wavelet

domain can be constructed that preserves the joint covariance struc-

ture of the wavelet coefficients. To this end, rather than bootstrap-

ping independently on the wavelet coefficients of each component,

the vectors of coefficients D(2j , k), k = 1, . . . , nj , are used in a

(circular) block-bootstrap procedure [19]. For each scale j, from the

periodically extended samples (D(2j , 1), . . . , D(2j , nj)), R block

bootstrap resamples D
∗(r)
j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)),

r = 1, . . . , R, are generated by a drawing-with-replacement pro-

cedure of ⌈card(Y )/LB⌉ overlapping blocks of fixed size LB ,

(D(2j , k), . . . , D(2j , k + LB − 1), k = 1, . . . , nj . Then, for each

resample D
∗(r)
j , bootstrap estimates S∗(r)(j) and (Ĥ

∗(r)
1 , Ĥ

∗(r)
2 )

are computed. The standard deviation of δ̂ is then approximated

by the square root of the variance estimated from the R bootstrap

samples Ĥ
∗(r)
2 − Ĥ

∗(r)
1 and labeled σ∗

δ .

Bootstrap test. The bootstrap test for H1 = H2, with significance

level α, is then defined as

dα = 1 : |δ̂| > σ∗

δ t1−α
2

(H1 = H2 rejected)

dα = 0 : |δ̂| ≤ σ∗

δ t1−α
2

(H1 = H2 accepted),
(4)

where tπ = F−1(π) and F is the standard normal cumulative dis-

tribution function.

4. TEST PERFORMANCE ASSESSMENT

4.1. Monte Carlo simulation

Monte Carlo experiments are conducted to assess the validity of the

multivariate bootstrap procedure and to quantify the performance of
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Fig. 1. Gaussanity of estimates. Quantile-quantile-plots against

standard normal of estimates δ = H2 −H1 under the null (left) and

alternative (right) hypothesis, showing that estimates for δ are well

modeled by a Gaussian distribution.
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Fig. 2. Standard deviation of δ̂ for several values of N (left) and ρ

(right) as a function of H2 −H1.

the test. NMC = 1000 independent realizations of synthetic bi-

variate ofBm of sizes N ∈ {212, 214, 216} are subjected to the

estimation procedure and test. Under the null hypothesis, ofBm

parameters are set to H1 = H2 = 0.8. Under the alternative hy-

pothesis, H2 = 0.8 and H1 ∈ {0.75, 0.7, . . . , 0.45, 0.4}. The

significance level (i.e., error of type 1) of the test is set to α =
0.05. The test performance is reported for several correlation lev-

els ρ0 ∈ {−0.6, −0.4, 0, 0.4, 0.8}. The mixture matrix is set

to P =
(

(0.69 0.31)T , (0.07 − 0.93)T
)

. For all these instances,

asymptotic joint normality holds [4]. This leads to an effective cor-

relation coefficient of ρ ∈ {0.25, 0.02, −0.33, −0.62, −0.88} for

the analyzed bivariate time series Y = PX . Other choices, not re-

ported here, yield equivalent performance. For the analysis, we use

least asymmetric Daubechies 3 wavelets (hence LB = 6), j1 = 5
and j2 = {7, 9, 11}, and R = 500 bootstrap resamples.

4.2. Statistical properties of δ̂ = Ĥ2 − Ĥ1

Monte Carlo experiments first enabled us to study the statistical

properties of δ̂. Fig. 1 shows quantile-quantile plots of δ̂ against

the standard normal distribution for several sample sizes, both when

H1 = 0.6, H2 = 0.8, ρ0 = 0.4
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Fig. 3. Bootstrap resampling. Top: single realization of bivariate

ofBm (N = 214). Center: log-scale diagrams of log2 λ
(

S(j)
)

(blue

solid lines and circles) and for their bootstrap replica log2 λ
(

S∗(j)
)

(averages and standard 95% confidence intervals; red dashed lines

and crosses) obtained by component-wise independent resampling

(left) and by the joint resampling method (right). Bottom: corre-

sponding estimates and bootstrap histograms for H1, H2.

H1 = H2 and H1 &= H2. The plots clearly validate the normal

approximation to the distribution of δ̂. Furthermore, Fig. 2 reports

standard deviations of δ̂ estimated over Monte Carlo realizations,

denoted

√

V arMC(δ̂), as a function of H2 −H1, for several values

for N and ρ. It clearly illustrates the fact that the variance of δ̂ does

not depend on the values of H1, H2 or ρ, and decreases as ∼ 1
N

apart from border effects of the wavelet transform.

4.3. Multivariate bootstrap accuracy and relevance

Multivariate vs. univariate resampling. We illustrate the rel-

evance of the proposed multivariate resampling strategy by com-

paring it with a bootstrap scheme that generates resamples of the

wavelet coefficients DYm(2j , k) independently for each component

m, instead of vector-wise. In Fig. 3, the functions log2 Λ
(

2j
)

(blue

lines) and their bootstrap replicas (averages and confidence inter-

vals, red) are plotted, together with histograms of bootstrap estimates

Ĥ∗

m for a single realization of bivariate ofBm, once for component-

wise bootstrap (left), and once based on the multivariate resampling

scheme (right). The empirical distribution obtained using the uni-

variate bootstrap clearly fails to accurately estimate the distributions

of log2 Λ
(

2j
)

m
and Hm, which stands in contrast to those obtained

from the advocated multivariate resampling scheme.

Accuracy of bootstrap variance estimation. To shed more light

on the accuracy of the proposed multivariate resampling strategy, in
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Fig. 5. Test performance. Average bootstrap decisions (for 1000
independent realizations) as a function of H2 − H1, for different

levels of correlation ρ ∈ {−0.8, −0.4, 0, 0.4, 0.8} (from left to

right, respectively) and sample sizes N ∈ {212, 214, 216}: the left-

most points (H2 − H1 = 0) correspond to the null hypothesis and

quantify the type 1 error of the test (for preset significance α = 0.05,

indicated by horizontal dashed line), the other points (H2−H1 > 0)

correspond to alternative hypotheses and quantify the test power.

Fig. 4 we report the ratios of the Monte Carlo variances V arMC(δ̂)
and averages (over Monte Carlo realizations) of the bootstrap vari-

ance estimators σ∗2
δ as a function of H2 − H1 and for several val-

ues for N and ρ. The results show that the bootstrap variance esti-

mates are on average excellent, lying within a few percent of the true

(Monte Carlo) variances, irrespective of sample size N , correlation

level ρ, and specific values of H1 and H2.

4.4. Test performance

Test performance under the null hypothesis. Fig. 5 plots av-

erage (over 1000 independent realizations) test decisions for three

different sample sizes N (left plot; ρ = 0.25) and several values

for ρ (right plot; N = 214), for H2 = 0.8 and various values for

H1. The leftmost points (H2 − H1 = 0) correspond to the null

hypothesis, i.e., H1 = H2 = 0.8, under which the average test deci-

sions ideally reproduce the significance level α. The results clearly

show that in all situations (i.e., for all sample sizes N and correla-

tion levels ρ), the average test decisions are very close to the preset

value α = 0.05. This indicates that the null distribution model used

in (4), relying on asymptotic Gaussianity and bootstrap estimates of

the unknown variance, is highly accurate.

Test performance under alternative hypotheses. The points to

the right of H2 − H1 = 0 in Fig. 5 correspond to the average

test decisions under the alternative hypothesis with H1 = 0.8 and

H2 ∈ {0.75, 0.7, . . . , 0.45, 0.4} (i.e., increasing δ); hence, they

quantify the power of the test. The results were as follows. The test

power increases both with the sample size and with the difference

H2 − H1, as expected. Interestingly, the power of the test slightly

decreases for increasing correlation ρ between the components of

ofBm. This indicates that it is more difficult to identify the existence

of two different values of H in data when the components are corre-

lated. Nevertheless, the reported test powers should be satisfactory

for most applications and enable, for instance, for N = 216 to detect

a small difference of 0.05 between H1 and H2 with reasonable prob-

ability > 65% for ρ = 0.25 (and still > 25% for N = 214). Note

that these sample sizes are common in applications such as Internet

traffic modeling [20] and macroscopic brain activity analysis [21].

The test power could also be further increased by setting the onset

scale j1 to a smaller value, which leads to a larger effective sample

size. These results further suggest that the proposed bivariate es-

timation and test methods are effective in disentangling the mixed

ofBm components (since, otherwise, the estimated values Ĥ1 and

Ĥ2 would be close and the test power small).

Overall, the reported results show that the proposed testing pro-

cedure for the equality of pairs of scaling exponents of ofBm with

nondiagonal mixing (coordinates) matrix is operational and effec-

tive, and can be readily applied to real world data.

5. CONCLUSIONS AND PERSPECTIVES

This work puts forward a new test for the equality of the self-

similarity exponents H1 and H2 of ofBm with non-trivial mixing

(coordinates) matrix, that is, for situations where classical univariate

estimation procedures cannot be used. The testing procedure is

constructed in the wavelet domain and relies on three original ingre-

dients. First, it makes use of a sample wavelet eigenvalue regression

approach for the accurate estimation of the self-similarity exponents

(eigenvalues) in mixed components; second, the asymptotic joint

normality for the corresponding estimators, established in [4, 11], is

used; third, a multivariate nonparametric block bootstrap resampling

scheme is devised that preserves the multivariate statistical structure

of the (wavelet vector coefficients of the) data. A broad Monte

Carlo study illustrates that the proposed procedure has satisfactory

performance in detecting differences between H1 and H2 even at

small sample sizes. In view of the notorious intricacy of asymp-

totic estimator covariance matrices in multivariate self-similarity

frameworks, we provide an operational and effective procedure that

can actually be applied to real world data. MATLAB code for the

estimation and testing procedures (together with the ofBm synthe-

sis procedure) is available upon request and published on the the

authors’ webpages.

Future methodological work includes the extension of the

method to the testing of the equality of multiple self-similarity

exponents H . This implies devising multiple hypotheses tests or

a strategy that allows to estimate how many self-similarity param-

eters are actually different amongst the multiple estimates. Also,

when the number of components increases while the sample size

remains small (high dimension), the Gaussian approximation to the

distribution of δ̂ might prove to be less accurate. Hence, instead of

assuming a priori the normality of δ̂ and applying the bootstrap only

in variance estimation, the distribution of the statistic itself could be

estimated by means of the multivariate bootstrap procedure, which

requires a modification of the final test formulation. Finally, the

estimation and test procedures will be used in applications such as

in macroscopic brain dynamics analysis of neuroscientific data.
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