Reactivity of B-Xanthyl N-Heterocyclic Carbene-Boranes
Anne-Laure Vallet, Sofia Telitel, Jacques Lalevee, Emmanuel Lacôte

To cite this version:

HAL Id: hal-02278558
https://hal-univ-lyon1.archives-ouvertes.fr/hal-02278558
Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reactivity of B-Xanthyl N-Heterocyclic Carbene-Boranes

Anne-Laure Vallet, a Sofia Telitel, b Jacques Lalèvée, a,b and Emmanuel Lacôte a,c

a ICSN-CNRS, Bâtiment 27, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
b Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CINES, ArianeGroup, LHCIPE, Bât. Raulin, 2 rue Victor Grignard, F-69622 Villeurbanne, France.
emmanuel.Lacôte@univ-lyon1.fr

Dedicated to Philippe Renaud on the occasion of his 60th birthday

The synthesis and reactivity of mono and bis-S-xanthyl NHC-boranes is reported. The new NHC-boranes are prepared via nucleophilic exchange at boron from either mono or bis-triflyl NHC–boranes, themselves obtained by protolysis of the NHC–BH3 starting compounds. The B–H bond of the S-xanthyl NHC-boranes can be cleaved both homolytically and heterolytically, albeit the latter is more synthetically useful. The S-xanthyl NHC-boranes can reduce both aldehydes and imines. The B–S bond can also be cleaved homolytically. Under UV irradiation, the S-xanthyl NHC-boranes generate NHC–boryl radicals that can initiate radical polymerizations of acrylates.

Keywords: Boron • Radical reactions • Polymerization • NHC-Boranes • Xanthates

Introduction

N-Heterocyclic carbene-boranes have emerged as a new family of reagent for inorganic and polymer synthesis. In organic synthesis, NHC-boranes have been shown to be excellent H-atom donors for radical reductions, hydride sources for the reduction of carbonyl or imine compounds, or partners for borylations. Yet in almost all these cases, the boron atom was only substituted by hydrogen atoms. We became interested in how the established was affected by substitution at boron. Installing a sulfur (an arylsulfide) proved rewarding since the corresponding B–S bond could be photolyzed to generate NHC-Boryl radicals, which initiated radical polymerizations. Alternatively the Curran group demonstrated that the thyl substituent could become a nucleophile, leading to sulfides. However the same NHC-Boryl sulfides could also undergo H-atom abstraction or hydride transfer, leading to bis-carbene, which means that not only their B–S bond, but also their B–H bonds could be activated. We wondered if that dual reactivity could be extended to other sulfur containing NHC-boranes. In the present communication we examine the reactivity of S-xanthyl NHC-boranes (NHCBX).

Results and Discussion

For the purpose of this study we prepared three different NHCBXs starting from the parents NHC-BH3 derivatives (Scheme 1). Following our established route, IMe-BH3 derivative 1 was converted to mono-xanthyl compound 3 using one equivalent of triflic acid and potassium xanthate (87% yield), while its bis xanthyl analogue 5 was prepared in 86% yield adapting the published procedure by using two equivalents of triflic acid that generates an IMe–BH(OTf) intermediate which is substituted twice at Boron with 2 equivalents of potassium xanthate. From the reactivity of 3 and 5 we expected to gather information on the influence of substitution at Boron. To examine the role of the steric size of the carbene, we also prepared IPr-derived NHCBX 4 in 35% yield.

Scheme 1. Preparation of the target S-xanthyl NHC-boranes (NHCBXs).

We first looked at the behavior of 3 as H-atom donor. α-Bromo ketone 6 was mixed with one equivalent of 3 in the presence of Et3B (Scheme 2). Air was bubbled in the reaction medium via syringe addition. The reaction yielded 45% of dehalogenated ketone 7, together with 55% of recovered starting material. In comparison, the same reaction with NHCB 1 delivered only 7 in 88% yield. This suggests that 3 could be a competent radical mediator, but the added substituent lowers its efficiency. We did not attempt to develop this aspect further.

Scheme 2. Radical dehalogenation with S-xanthyl NHC-borane 3.
We next looked at the possibility of hydride transfer. Actually, the NHCBX’s have two transferrable nucleophiles: the hydride or the xanthate. With a view to favor the hydride transfer, we targeted the reduction of aldehydes.\(^\text{21}\)

![Scheme 3. Hydride transfer from S-xanthyl NHC-Boranes to aldehydes.](image)

In a typical experiment, p-chlorobenzaldehyde was treated with NHCBX 3 at room temperature in dichloromethane in the presence of one equivalent of scandium (III) triflate (Scheme 3). The reaction delivered 72\% of the corresponding benzyl alcohol. Gratifyingly, bis-xanthate derivative 5 was also able to transfer its hydride, albeit in a slightly reduced yield (60\%).

When cinnamaldehyde was reacted with 3, only aldehyde reduction was observed, no 1,4 reduction, and the reaction was quantitative. Switching to bis-xanthyl borane 5 delivered cinnamyl alcohol, again in reduced yield (55\%). Nonetheless, the combined results show that the xanthyl substitution at boron does not harm the hydridic reactivity of the NHC-Borane, but that steric hindrance lowers the yields.

Table 1. Reductive Amination with S-xanthyl NHC-Boranes.

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHCBX</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>Product, yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^a)</td>
<td>3</td>
<td>4-Cl</td>
<td>H</td>
<td>8a, 89</td>
</tr>
<tr>
<td>2(^b)</td>
<td>4</td>
<td>4-Cl</td>
<td>H</td>
<td>8a, 50</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4-NO(_2)</td>
<td>H</td>
<td>8b, 46</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4-Cl</td>
<td>4-Br</td>
<td>8c, 70</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td>H</td>
<td>8d, 96</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4-Cl</td>
<td>H</td>
<td>8a, 84</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: Aldehyde (1 equiv); aniline (1 equiv); CH\(_2\)Cl\(_2\) (2 mL); 4 Å molecular sieves; AcOH (1.3 equiv) and NHCBX (1.3 equiv) were stirred at rt, unless otherwise noted the reaction took 2h. \(^b\) Reaction took 12h. \(^c\) Cinnamaldehyde was used.

We next tried to extend the previous reaction to reductive aminations. We used our previously reported methodology (Table 1).\(^{20}\) It relies on the stability of the NHC–Boranes toward acetic acid, which was not guaranteed with the S-xanthyl group that could be intrinsically acid-sensitive, or make the hydride more basic and therefore able to react with the acetic acid to generate dihydrogen.

In a typical experiment (Table 1, Entry 1),\(^{19}\) A solution of 4-chloro benzaldehyde (1 equiv) and aniline (1 equiv) in 2 mL of dichloromethane at room temperature was stirred for 1h over 4 Å molecular sieves. Acetic acid (1.3 equiv) and S-xanthyl NHC-Borane 3 (1.3 equiv) were added to the reaction mixture. The resulting slurry was stirred for an additional hour, before work-up. This delivered 89\% of amine 8a. The reductive elimination worked well with 4-Bromo aniline (70\% of 8c, Entry 4), but less so when para-nitrobenzaldehyde was used (8b, 46\%, Entry 3). The reaction was not limited to arylaldehydes, since cinnamaldehyde led to the corresponding amine in 96\% yield (Entry 5). Other NHCBX’s were tested. With the more sterically hindered 4, only 50\% of 8a was isolated (Entry 2), while the bis-xanthyl derivative 5 led to 84\% of 8a (Entry 6).

Overall, the reductive amination results further support that the S-xanthyl derivatives retain the hydridic character of NHC-boranes, but that steric hindrance on the carbene is an issue. A second xanthate does not affect the reactivity.

The combined results presented thus far show that the B–H bond of the NHCBX’s can be activated. The hydridic reactivity is better from a synthetic point of view, as it leads to better yields. While the homolytic scission is possible too, it is not efficient enough to be applied in synthesis. Given our previous experience with the photolysis of S-aryl NHC-boryl sulfides,\(^{[ref]}\) we wondered if we could use a similar B–S bond cleavage in a synthetically useful way.

The UV spectrum of 4 exhibits a band at around 255 nm, that disappears after 30s irradiation with a Hg-Xe UV lamp (intensity approx. 60 mW/cm\(^2\), Figure 1, top). This band corresponds to the B–S bond of 4. Its disappearance suggests that the bond gets photolyzed under UV irradiation. We therefore examined whether 4 could be a competent Type I photoinitiator for the polymerization of acrylates.\(^{21}\)

When trimethylolpropane triacylate (TMPTA) was irradiated under UV (with a filter to stop any wavelength below 300 nm), it led to a polymer. The self-initiated polymerization was monitored by the disappearance of the IR band corresponding to the olefin (Figure 1, bottom, curve 1). The polymerization only starts after a lagging time of several seconds. It however leads to the expected polymer with 50\% conversion. Full conversion is not possible for two reasons. Since the monomer has three reactive functions it rapidly leads to cross-linked networks that make the remaining olefin unaccessible geometrically, all the more so because the formulation becomes very hard quickly.
 Gratifyingly, when 2 mol% of 4 were added, the lagging time disappeared, the polymerization rate increased (almost vertical initial conversion) and the conversion improved slightly to 60%. In other words, 4 acts as a Type I photoinitiator able to generate initiating radicals upon light (UV) irradiation. The lagging time is due to inhibition by dioxygen, which blocks the radical polymerization. Its disappearance strongly supports that the photopolymerization in the presence of 4 is indeed initiated by NHC-Boryl radicals, the latter being able to efficiently trap the dioxygen in a way that does not stop the polymerization.[39]

Conclusions

To conclude, the installation of one or two S-xanthyl substituent(s) at boron is possible. The resulting new NHC-Boranes are both good hydrides and Type I photo-initiators. That is, both their B–H and B–S bonds can be cleaved for reactivity. Further work will focus on exploiting the specific properties of S-xanthates in radical chemistry. Radical thio-boration should be accessible via the degenerate radical processes extensively studied by Zard.[38] In polymer chemistry, this would open to RAFT polymerization and with that to boron-initiated controlled radical polymerization, or to the synthesis of block copolymers using light. Our first forays in that direction show that the B–H bonds still present in 3–5 are detrimental. More molecular engineering is required to reach that goal.

Experimental Section

General remarks

Reactions were performed using oven-dried glasswares under an atmosphere of argon. All separations were carried out under flash-chromatographic conditions on silica gel 5Redi Sep prepacked column, 230–400 mesh) at medium pressure (20 psi) with use of a CombiFlash Companion or under preparative high pressure liquid chromatography (Knauer, Smartline Autosampler 3900 and Wellchrom preparative pump K-1800). The reactions were monitored by thin-layer chromatography on Merck silica gel plates (60 F254 aluminum sheets) which were revealed by ultraviolet and spraying with vanillin (15% + sulfuric acid [2.5%] in EtOH), followed by heating. Reagent-grade chemicals were obtained from diverse commercial suppliers (Sigma-Aldrich and Alfa Aesar) and were used as received. 1H NMR (300, 400, 500 and 700 MHz), 13C NMR (96, 128 and 160 MHz) and 11B NMR spectra were recorded on Bruker Advance spectrometers at 298 K. Spectra were recorded at room temperature in the indicated deuterated solvents, and chemical shifts were reported in parts per million (ppm) downfield relative to TMS using the residual solvent proton resonance of CDCl3 (1H = 7.27 ppm, 13C = 77.0 ppm) or CD3OD (1H = 7.16 ppm, 13C = 128.0 ppm) as the internal standard. The 11B chemical shift are given relative to BF3·OEt2 (11B = 0 ppm). Multiplicities are declared as follow: s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quadruplet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet). Coupling constants J are given in Hz. The resonances of hydrogen and carbon atoms connected to the boron atom are not usually observed in 1H and 13C NMR spectra because of quadrupole broadening. Infrared spectra (IR) were recorded on a Perkin-Elmer FT-IR system using diamond window Dura SampELL II and the data are reported in reciprocal centimeters (cm⁻¹). Melting points were recorded in open capillary tubes on a Büchi B-450 apparatus and are uncorrected. High resolution mass spectra (HRMS) were recorded using a Micromass LCT Premier XE instrument (Waters) and are determined by electrospray ionization (ESI). Elemental analyses were carried out at the Institut de Chimie des Substance Naturelles (ICSN, Gif-sur-Yvette, France).

Trimethyl-propane triacrylate (TMPTA) was obtained from Allnex and used as received. The UV/vis spectra were taken on a JASCO V530 spectrometer. The polychromatic UV light delivered from a Xe-Hg lamp (Hamamatsu, L8252, 150 W, filtered for λ > 300 nm) was used. Upon irradiation, the photopolymerization kinetics were recorded by Real-Time FT-IR as reported previously.[8][11]

Preparation of the S-xanthyl NHC-Boranes

NHCBX 4 was prepared as described previously.[37] 3.1. In a round-bottom flask, IMe–BH3 (573 mg, 5.21 mmol) was dissolved in anhydrous dichloromethane (50 mL) at room temperature. Triflic acid (450 µL, 5.21 mmol) was added dropwise. The colorless solution was left
at rt for one hour until the evolution of gas subsided. A solution of potassium ethyl xanthogenate (1.644 g, 10.2 mmol) in acetonitrile (50 mL) was then added via canula. The resulting yellow solution was left at rt for one hour after the end of the addition. The solvents were then removed in vacuo, after which the solid residue was redissolved (partly) in chloroform (100 mL). The slurry was filtered and the filtrate was concentrated and triturated with pentane. The slightly yellow solid was dried (1.04 g, 87% yield). 1H NMR (CDCl$_3$, 500 MHz): $\delta = 1.31$ (t, $J = 7.0$ Hz, 3H, CH$_3$Me), 2.20–2.86 (m[broad q, 2H, BHi]), 3.90 (s, 6H, NMe), 4.30 (q, $J = 7.0$ Hz, 2H, CH$_2$Me), 6.86 (s, 2H, HC=); 13B NMR (CDCl$_3$, 160 MHz): $\delta = -24.8$ (t, $J = 101$ Hz).

In a round-bottom flask, iMe–BH$_2$ (524 mg, 4.76 mmol) was dissolved in anhydrous dichloromethane (50 mL) at room temperature. Triflic acid (900 µL, 10.4 mmol) was added dropwise. The colorless solution was left at rt for one hour until the evolution of gas subsided. A solution of potassium ethyl xanthogenate (1.644 g, 10.2 mmol) in acetonitrile (50 mL) was then added via canula. The resulting yellow solution was left at rt for one hour after the end of the addition. The solvents were then removed in vacuo, after which the solid residue was redissolved (partly) in chloroform (100 mL). The slurry was filtered and the filtrate was concentrated and triturated with pentane. The slightly yellow solid was dried (1.04 g, 87% yield). 1H NMR (CDCl$_3$, 500 MHz): $\delta = 1.34$ (t, $J = 7.0$ Hz, 6H, CH$_3$Me), 4.00 (s, 6H, NMe), 4.49 (q, $J = 7.0$ Hz, 2H, CH$_2$Me), 4.52 (q, $J = 7.0$ Hz, 2H, CH$_2$Me), 6.89 (s, 2H, HC=); 13C NMR (CDCl$_3$, 75 MHz): $\delta = 14.0$ (CH$_3$Me), 37.3 (NMe), 69.4 (CH$_2$Me), 121.8 (=CH), 191.1 (C=S); 11B NMR (CDCl$_3$, 160 MHz): $\delta = -14.4$ (d, $J = 111$ Hz); HRMS calc. for C$_1$H$_8$N$_2$O$_2$S$_2$Na (M+Na)$^+$: 373.0320, found: 373.0327.

General Procedures

Aldehyde reductions. In a Schlenk flask, the NHCX (1 equiv.) and the aldehyde (1 equiv.) were dissolved in dichloromethane (to reach 0.5 M concentration). The scandium triflate (1 equiv.) was added and the mixture was stirred overnight, filtered, concentrated in vacuo and purified by flash column chromatography. **Reductive eliminations.** A solution of the aldehyde (1 equiv) and aniline (1 equiv) in dichloromethane (2 mL) was stirred at room temperature over 4 Å molecular sieves for 1 h. Acetic acid (1.3 equiv) and the NHCBX (1.3 equiv) were then added and the resulting reaction mixture was stirred for one hour, and filtered. The solvent was removed under reduced pressure and the residue was purified by flash chromatography.

Radical Photopolymerization. TMPTA was used as the monomer in the film photopolymerization experiments. The experiments were carried out in laminate. The films (25 µm thick) deposited on a BaF$_2$ pellet were irradiated (see the irradiation sources). The evolution of the double bond content was continuously followed by real time FTIR spectroscopy (AJSCO FTIR 4100) at about 1630 cm$^{-1}$.

Acknowledgements

This work was supported by CNRS, UHA and ANR (grant NHCX). A.-L. V. thanks ICSD for a doctoral stipend. We thank Frédéric LeQuéméner (Université Claude Bernard Lyon 1) for sharing his know-how on the preparation of 3 and 4.

Author Contribution Statement

A.-L. V. designed and carried out the molecular experiments, and contributed to their analyses. E. L. and J. L. defined the general strategy; secured the funding, contributed to the analysis of the results, and wrote the drafts of the manuscript. J. L. carried out the polymer experiments.

References

HELVETICA

B−H scission releases H⁺ or H⁻

B−S homolytic scission leads to radical polymerization initiation

Installation of S-xanthates on NHC-Boranes make them both hydrides and Type I photopolymerization photoinitiators. #Boron chameleons