J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, 1990.

A. Bedford and D. S. Drumheller, A variational theory of immiscible mixtures, Arch. Ration. Mech. Anal, vol.68, pp.37-51, 1978.
DOI : 10.1007/bf00276178

A. Bedford and D. S. Drumheller, Theories of immiscible and structured mixtures, Internat. J Engrg Sci, vol.21, pp.863-960, 1983.
DOI : 10.1016/0020-7225(83)90071-x

M. A. Biot, Mechanics of Deformation and Acoustic Propagation in Porous Media, J. Appl. Phys, vol.33, p.1482, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01368725

L. Bociu, G. Guidoboni, R. Sacco, and J. T. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models, Arch. Ration. Mech. Anal, vol.222, pp.1445-1519, 2016.
DOI : 10.1007/s00205-016-1024-9

URL : https://scholarworks.iupui.edu/bitstream/1805/12002/1/Bociu_2016_analysis.pdf

E. Bosco, R. H. Peerlings, and M. G. Geers, Predicting hygro-elastic properties of paper sheets based on an idealized model of the underlying fibrous network, Int. J. Solids Struct, vol.56, pp.43-52, 2015.

C. Cances, C. Choquet, Y. Fan, and I. S. Pop, Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report, pp.10-75, 2010.

S. ?ani?, C. J. Hartley, D. Rosenstrauch, J. Tamba?a, G. Guidoboni et al., Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics and Experimental Validation, Ann. Biomed. Eng, vol.34, pp.575-592, 2006.

Y. Cao, S. Chen, and A. J. Meir, Analysis and numerical approximations of equations of nonlinear poroelasticity, Discrete Contin. Dyn. Syst. Ser. B, vol.18, pp.1253-1273, 2013.

X. Cao and I. S. Pop, Degenerate two-phase porous media flow model with dynamic capillarity, J. Differ. Equations, vol.260, pp.2418-2456, 2016.
DOI : 10.1016/j.jde.2015.10.008

L. Cardoso, S. P. Fritton, G. Gailani, M. Benalla, and S. C. Cowin, Advances in assessment of bone porosity, permeability, and interstitial fluid flow, J. Biomech, vol.46, pp.253-265, 2013.

O. Coussy and . Poromechanics, , 2004.

S. C. Cowin and . Bone-poroelasticity, J. Biomech, vol.32, pp.218-238, 1999.

C. J. Van-duijn, A. Mikeli?, and T. Wick, A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Math. Mech. Solids, vol.24, pp.1530-1555, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02072945

L. C. Evans, A survey of entropy methods for partial differential equations, B. Am. Math. Soc, vol.41, pp.409-438, 2004.

A. Jüngel, Entropy methods for diffusive partial differential equations, BCAM Springer Briefs, 2016.

E. Holland and R. E. Showalter, Poro-Visco-Elastic Compaction in Sedimentary Basins, SIAM J. Math. Anal, vol.50, pp.2295-2316, 2018.
DOI : 10.1137/17m1141539

R. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 1998.

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, 1969.

A. Marciniak-czochra and A. Mikeli?, A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic Plate, Arch. Rational Mech. Anal, vol.215, pp.1035-1062, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00863444

C. C. Mei and B. Vernescu, Homogenization methods for multiscale mechanics, 2010.

A. Mikeli?, A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure, J. Differ. Equations, vol.248, pp.1561-1577, 2010.

A. Mikeli? and J. Tamba?a, Derivation of a poroelastic flexural shell model, Multiscale Model. Simul, vol.14, pp.364-397, 2016.

A. Mikeli? and M. F. Wheeler, On the interface law between a deformable porous medium containing a viscous fluid and an elastic body, Math. Models Methods Appl. Sci, vol.22, p.1250031, 2012.

J. P. Mili?i?, The unsaturated flow in porous media with dynamic capillary pressure, J. Differ. Equations, vol.264, pp.5629-5658, 2018.

S. E. Minkoff, C. M. Stone, S. Bryant, M. Peszynska, and M. F. Wheeler, Coupled fluid flow and geomechanical deformation modeling, J. Petrol. Sci. Eng, vol.38, pp.37-56, 2003.
DOI : 10.1016/s0920-4105(03)00021-4

M. A. Murad and J. H. Cushman, Multiscale flow and deformation in hydrophilic swelling porous media, Internat. J Engrg Sci, vol.34, pp.313-338, 1996.
DOI : 10.1016/0020-7225(95)00057-7

S. Owczarek, A Galerkin method for Biot consolidation model, Math. Mech. Solids, vol.15, pp.42-56, 2010.

M. Prosi, P. Zunino, K. Perktold, and A. Quarteroni, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow, J. Biomech, vol.38, pp.903-917, 2005.

T. Roubi?ek, Nonlinear Partial Differential Equations with Applications, 2005.

J. Rutqvist, L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing et al., Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models, Int. J. Rock Mech. Min. Sci, vol.38, pp.105-127, 2001.

E. Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.129, 1980.

B. A. Schrefler, L. Simoni, L. Xikui, and O. C. Zienkiewicz, Mechanics of partially saturated porous media, in "Numerical Methods and Constitutive Modelling in Geomechanics, Courses and Lectures CISM, pp.169-211, 1990.

B. Schweizer and P. Differentialgleichungen, , 2018.

R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl, vol.251, pp.310-340, 2000.

K. Terzaghi, Theoretical soil mechanics, 1951.

I. Tolstoy, Acoustics, elasticity, and thermodynamics of porous media, 1992.

A. Verruijt and S. Van-baars, Soil mechanics, 2007.

E. Zeidler, Nonlinear functional analysis and its applications II/B Nonlinear monotone operators, 1990.

A. ?ení?ek, The existence and uniqueness theorem in Biot's consolidation theory, Appl. Math, vol.29, pp.194-211, 1984.