T. Von-kármán, Mechanical similitude and turbulence, Technical Memorandum, vol.611, 1931.

L. , Zur Turbulenten Strömung in Rohren und längs Platten, Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, pp.18-29, 1932.

T. Von-kármán, Turbulence and skin friction, J. Aeronaut. Sci, vol.1, p.1, 1934.

M. H. Buschmann and M. Gad-el-hak, Recent developments in scaling of wall-bounded flows, Prog. Aerosp. Sci, vol.42, p.419, 2006.

H. M. Nagib and K. A. Chauhan, Variations of von Kármán coefficient in canonical flows, Phys. Fluids, vol.20, p.101518, 2008.

J. C. Klewicki, Reynolds number dependence, scaling, and dynamics of turbulent boundary layers, J. Fluids Eng, vol.132, p.94001, 2010.

A. J. Smits, B. J. Mckeon, and I. Marusic, High-Reynolds number wall turbulence, Annu. Rev. Fluid Mech, vol.43, p.353, 2011.

M. V. Zagarola and A. J. Smits, Scaling of the Mean Velocity Profile for Turbulent Pipe Flow, Phys. Rev. Lett, vol.78, p.239, 1997.

B. J. Mckeon, J. Li, W. Jiang, J. F. Morrison, and A. J. Smits, Further observations on the mean velocity distribution in fully developed pipe flow, J. Fluid Mech, vol.501, p.135, 2004.

J. M. Österlund, A. V. Johansson, H. M. Nagib, and M. H. Hites, A note on the overlap region in turbulent boundary layers, Phys. Fluids, vol.12, p.1, 2000.

E. Zanoun, F. Durst, and H. Nagib, Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows, Phys. Fluids, vol.15, p.3079, 2003.

S. C. Bailey, M. Vallikivi, M. Hultmark, and A. J. Smits, Estimating the value of von Kármán's constant in turbulent pipe flow, J. Fluid Mech, vol.749, p.79, 2014.

M. Wosnik, L. Castillo, and W. K. George, A theory for turbulent pipe and channel flows, J. Fluid Mech, vol.421, p.115, 2000.

I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, On the logarithmic region in wall turbulence, J. Fluid Mech, vol.716, p.3, 2013.

F. H. Clauser, The Turbulent Boundary Layer, pp.1-51, 1956.

D. B. De-graaff and J. K. Eaton, Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech, vol.422, p.319, 2000.

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, Hot-wire spatial resolution issues in wallbounded turbulence, J. Fluid Mech, vol.635, p.103, 2009.

D. T. Squire, C. Morrill-winter, N. Hutchins, M. P. Schultz, J. C. Klewicki et al., Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers, J. Fluid Mech, vol.795, p.210, 2016.

N. Hutchins, Caution: Tripping hazards, J. Fluid Mech, vol.710, p.1, 2012.

P. Schlatter and R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers, J. Fluid Mech, vol.659, p.116, 2010.

L. P. Erm and P. N. Joubert, Low-Reynolds-number turbulent boundary layers, J. Fluid Mech, vol.230, p.1, 1991.

L. Castillo and T. G. Johansson, The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient, J. Turbul, vol.3, p.31, 2002.

T. Johansson and R. Karlsson, Measurement issues in high Reynolds number flows, 2002.

I. Marusic, K. A. Chauhan, V. Kulandaivelu, and N. Hutchins, Evolution of zero-pressure-gradient boundary layers from different tripping conditions, J. Fluid Mech, vol.783, p.379, 2015.

J. P. Monty, Developments in smooth wall turbulent duct flows, 2005.

E. Zanoun, E. Öngüner, and C. Egbers, Conventional measuring probes in the wall layer of turbulent subsonic ducted flows, Thermophys. Aeromechanics, vol.23, p.329, 2016.

J. Jiménez and R. D. Moser, What are we learning from simulating wall turbulence?, Philos. Trans. R. Soc., A, vol.365, p.715, 2007.

Y. Yamamoto and Y. Tsuji, Numerical evidence of logarithmic regions in channel flow at Re ? = 8000, Phys. Rev. Fluids, vol.3, p.12602, 2018.

M. Lee and R. D. Moser, Direct numerical simulation of turbulent channel flow up to Re ? ? 5200, J. Fluid Mech, vol.774, p.395, 2015.

S. Hoyas and J. Jiménez, Scaling of the velocity fluctuations in turbulent channels up to Re ? =, Phys. Fluids, vol.18, p.11702, 2003.

F. Laadhari, Reynolds number effect on the dissipation function in wall-bounded flows, Phys. Fluids, vol.19, p.38101, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00745571

M. P. Schultz and K. A. Flack, Reynolds-number scaling of turbulent channel flow, Phys. Fluids, vol.25, p.25104, 2013.

M. Bernardini, S. Pirozzoli, and P. Orlandi, Velocity statistics in turbulent channel flow up Re ? = 4000, J. Fluid Mech, vol.742, p.171, 2014.

X. Wu and P. Moin, A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow, J. Fluid Mech, vol.608, p.81, 2008.

M. Hultmark, M. Vallikivi, S. C. Bailey, and A. J. Smits, Turbulent Pipe Flow at Extreme Reynolds Numbers, Phys. Rev. Lett, vol.108, p.94501, 2012.

G. K. El-khoury, P. Schlatter, A. Noorani, P. F. Fischer, G. Brethouwer et al., Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow, Turbul. Combust, vol.91, p.475, 2013.

C. Chin, J. Monty, and A. Ooi, Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layer, Int. J. Heat Fluid Flow, vol.45, p.33, 2014.

J. Ahn, J. H. Lee, J. Lee, J. Kang, and J. J. Sung, Direct numerical simulation of a 30R long turbulent pipe flow at Re ? = 3008, Phys. Fluids, vol.27, p.65110, 2015.

N. Furuichi, Y. Terao, Y. Wada, and Y. Tsuji, Friction factor and mean velocity profile for pipe flow at high Reynolds numbers, Phys. Fluids, vol.27, p.95108, 2015.

C. Bauer, D. Feldmann, and C. Wagner, On the convergence and scaling of high-order statistical moments in turbulent pipe flow using direct numerical simulations, Phys. Fluids, vol.29, p.125105, 2017.

R. Örlü and P. Schlatter, Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers, Exp. Fluids, vol.54, p.1547, 2013.

J. A. Sillero, J. Jiménez, and R. D. Moser, One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to ? + ?, Phys. Fluids, vol.25, p.105102, 2000.

S. C. Bailey, M. Hultmark, J. P. Monty, P. H. Alfredsson, M. S. Chong et al., Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes, J. Fluid Mech, vol.715, p.642, 2013.

M. Vallikivi, M. Hultmark, and A. J. Smits, Turbulent boundary layer statistics at very high Reynolds number, J. Fluid Mech, vol.779, p.371, 2015.

F. Laadhari, An apparent symmetry property of the mean velocity gradient in turbulent Poiseuille flows and its implications, Phys. Fluids, vol.23, p.101705, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639071

J. C. Klewicki, A turbulent wall-flow vorticity consistent with mean dynamics, J. Fluid Mech, vol.737, p.176, 2013.

R. Örlü, T. Fiorini, A. Segalini, G. Bellani, A. Talamelli et al., Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE, vol.375, p.20160187, 2017.

R. L. Panton, Review of wall turbulence as described by composite expansions, Appl. Mech. Rev, vol.58, p.1, 2005.

J. P. Monty, N. Hutchins, H. C. Ng, I. Marusic, and M. S. Chong, A comparison of turbulent pipe, channel and boundary layer flows, J. Fluid Mech, vol.632, p.431, 2009.

J. Jiménez, S. Hoyas, P. P. Simens, and Y. Mizuno, Turbulent boundary layers and channels at moderate Reynolds numbers, J. Fluid Mech, vol.657, p.335, 2010.

G. L. Mellor, The effects of pressure gradients on turbulent flow near a smooth wall, J. Fluid Mech, vol.24, p.255, 1966.

H. Mcdonald, The effect of pressure gradient on the law of the wall in turbulent flow, J. Fluid Mech, vol.35, p.311, 1969.

J. Jiménez, Wall turbulence with arbitrary mean velocity profiles, 2010.

H. Schlichting, Boundary-Layer Theory, 1979.

M. V. Zagarola and A. J. Smits, Mean-flow scaling of turbulent pipe flow, J. Fluid Mech, vol.373, p.33, 1998.

B. J. Mckeon and J. F. Morrison, Asymptotic scaling in turbulent pipe flow, Philos. Trans. R. Soc., A, vol.365, p.771, 2007.

A. A. More, Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes, Chem. Eng. Sci, vol.61, p.5515, 2006.

S. Heinz, On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis, J. Turbul, vol.19, p.929, 2018.

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, Approach to an asymptotic state for zero pressure gradient turbulent boundary layers, Philos. Trans. R. Soc., A, vol.365, pp.54605-54620, 2007.