S. M. Adl, A. G. Simpson, C. E. Lane, J. Lukes?, D. Bass et al., The revised classification of eukaryotes, J. Eukaryot. Microbiol, vol.59, pp.429-514, 2012.
URL : https://hal.archives-ouvertes.fr/mnhn-02498504

M. J. Barbera, I. Ruiz-trillo, J. Y. Tufts, A. Bery, J. D. Silberman et al., Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties, Eukaryot. Cell, vol.9, pp.1913-1924, 2010.

C. Berney and J. Pawlowski, A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record, Proc. R. Soc. B Biol. Sci, vol.273, pp.1867-1872, 2006.

K. Bolte, S. A. Rensing, and U. Maier, The evolution of eukaryotic cells from the perspective of peroxisomes: phylogenetic analyses of peroxisomal betaoxidation enzymes support mitochondria-first models of eukaryotic cell evolution, Bioessays, vol.37, pp.195-203, 2015.

C. Brochier-armanet, P. Forterre, and S. Gribaldo, Phylogeny and evolution of the Archaea: one hundred genomes later, Curr. Opin. Microbiol, vol.14, pp.274-281, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598326

J. J. Brocks, G. A. Logan, R. Buick, and R. E. Summons, Archean molecular fossils and the early rise of eukaryotes, Science, vol.285, pp.1033-1036, 1999.

C. T. Brown, L. A. Hug, B. C. Thomas, I. Sharon, C. J. Castelle et al., Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, vol.523, pp.208-211, 2015.

R. Buick, Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites?, Precambrian Res, vol.24, pp.157-172, 1984.

R. Buick, Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in archaean stromatolites? A reply, Precambrian Res, vol.39, pp.311-317, 1988.

R. Buick, Early life: ancient acritarchs, Nature, vol.463, pp.885-886, 2010.

F. Burki, M. Kaplan, D. V. Tikhonenkov, V. Zlatogursky, B. Q. Minh et al., , 2016.

, Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista, Proc. R. Soc. B Biol. Sci, vol.283

N. J. Butterfield, Bangiomorpha pubescensn. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes, Paleobiology, vol.26, p.386, 2000.

C. J. Castelle, K. C. Wrighton, B. C. Thomas, L. A. Hug, C. T. Brown et al., Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling, Curr. Biol, vol.25, pp.690-701, 2015.

U. Cenci, D. Moog, B. A. Curtis, G. Tanifuji, L. Eme et al., Heme pathway evolution in kinetoplastid protists, BMC Evol. Biol, vol.16, p.1004007, 2016.

C. J. Cox, P. G. Foster, R. P. Hirt, S. R. Harris, and T. M. Embley, The archaebacterial origin of eukaryotes, Proc. Natl. Acad. Sci. USA 105, pp.20356-20361, 2008.

J. B. Dacks and W. F. Doolittle, Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help, Cell, vol.107, pp.419-425, 2001.

J. B. Dacks and M. C. Field, Evolution of the eukaryotic membranetrafficking system: origin, tempo and mode, J. Cell Sci, vol.120, pp.2977-2985, 2007.

J. B. Dacks, P. P. Poon, and M. C. Field, Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.588-593, 2008.

R. Derelle, G. Torruella, V. Klimes?, H. Brinkmann, E. Kim et al., Bacterial proteins pinpoint a single eukaryotic root, Proc. Natl. Acad. Sci. USA, vol.112, pp.693-699, 2015.

D. Devos, S. Dokudovskaya, F. Alber, R. Williams, B. T. Chait et al., Components of coated vesicles and nuclear pore complexes share a common molecular architecture, PLoS Biol, vol.2, p.380, 2004.

D. P. Devos, R. Gra?f, and M. C. Field, Evolution of the nucleus, Curr. Opin. Cell Biol, vol.28, pp.8-15, 2014.

E. J. Douzery, E. A. Snell, E. Bapteste, F. Delsuc, and H. Philippe, The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?, Proc. Natl. Acad. Sci. USA, vol.101, pp.15386-15391, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00193035

J. L. Eigenbrode and K. H. Freeman, Late Archean rise of aerobic microbial ecosystems, Proc. Natl. Acad. Sci. USA, vol.103, pp.15759-15764, 2006.

J. G. Elkins, M. Podar, D. E. Graham, K. S. Makarova, Y. Wolf et al., A korarchaeal genome reveals insights into the evolution of the Archaea, Proc. Natl. Acad. Sci. USA, vol.105, pp.8102-8107, 2008.

L. Eme, S. C. Sharpe, M. W. Brown, and A. J. Roger, On the age of eukaryotes: evaluating evidence from fossils and molecular clocks, Cold Spring Harb. Perspect. Biol, vol.6, p.16139, 2014.

P. Forterre, A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong, Res. Microbiol, vol.162, pp.77-91, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00580876

K. L. French, C. Hallmann, J. M. Hope, P. L. Schoon, J. A. Zumberge et al., Reappraisal of hydrocarbon biomarkers in Archean rocks, Proc. Natl. Acad. Sci. USA, vol.112, pp.5915-5920, 2015.

J. P. Gogarten, H. Kibak, P. Dittrich, L. Taiz, E. J. Bowman et al., Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes, Proc. Natl. Acad. Sci. USA, vol.86, pp.6661-6665, 1989.

S. Gribaldo and P. Cammarano, The root of the universal tree of life inferred from anciently duplicated genes encoding components of the proteintargeting machinery, J. Mol. Evol, vol.47, pp.508-516, 1998.

S. Gribaldo and H. Philippe, Ancient phylogenetic relationships. Theor, Popul. Biol, vol.61, pp.391-408, 2002.

S. Gribaldo, A. M. Poole, V. Daubin, P. Forterre, and C. Brochier-armanet, The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?, Nat. Rev. Microbiol, vol.8, pp.743-752, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539502

L. Guy and T. J. Ettema, The archaeal 'TACK' superphylum and the origin of eukaryotes, Trends Microbiol, vol.19, pp.580-587, 2011.

D. He, O. Fiz-palacios, C. Fu, J. Fehling, C. Tsai et al., An alternative root for the eukaryote tree of life, Curr. Biol, vol.24, pp.465-470, 2014.

S. B. Hedges and S. Kumar, Precision of molecular time estimates, Trends Genet, vol.20, pp.242-247, 2004.

S. B. Hedges, H. Chen, S. Kumar, D. Y. Wang, A. S. Thompson et al., A genomic timescale for the origin of eukaryotes, BMC Evol. Biol, vol.1, p.4, 2001.

S. Y. Ho and M. J. Phillips, Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times, Syst. Biol, vol.58, pp.367-380, 2009.

E. J. Javaux, A. H. Knoll, and M. Walter, Recognizing and interpreting the fossils of early eukaryotes, Orig. Life Evol. Biosph, vol.33, pp.75-94, 2003.

E. J. Javaux, A. H. Knoll, and M. R. Walter, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans, Geobiology, vol.2, pp.121-132, 2004.

A. Karnkowska, V. Vacek, Z. Zuba??ova, S. C. Treitli, R. Petrz?elkova et al., A Eukaryote without a Mitochondrial Organelle, Curr. Biol, vol.26, pp.1274-1284, 2016.

C. M. Klinger, A. Spang, J. B. Dacks, and T. J. Ettema, Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks, Mol. Biol. Evol, vol.33, pp.1528-1541, 2016.

A. H. Knoll, E. J. Javaux, D. Hewitt, and P. Cohen, Eukaryotic organisms in Proterozoic oceans, Philos. Trans. R. Soc. B. Biol. Sci, vol.361, pp.1023-1038, 2006.

E. V. Koonin, Preview. The incredible expanding ancestor of eukaryotes, Cell, vol.140, pp.606-608, 2010.

E. V. Koonin, Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?, Philos. Trans. R. Soc. B. Biol. Sci, vol.370, 2015.

E. V. Koonin and N. Yutin, The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes, Cold Spring Harb. Perspect. Biol, vol.6, 2014.

V. L. Koumandou, B. Wickstead, M. L. Ginger, M. Van-der-giezen, J. B. Dacks et al., Molecular paleontology and complexity in the last eukaryotic common ancestor, Crit. Rev. Biochem. Mol. Biol, vol.48, pp.373-396, 2013.

N. Lane and W. Martin, The energetics of genome complexity, Nature, vol.467, pp.929-934, 2010.

N. Lane and W. F. Martin, Eukaryotes really are special, and mitochondria are why, Proc. Natl. Acad. Sci. USA 112, p.4823, 2015.

M. M. Leger, M. Petru?, V. ?a?ský, L. Eme, ?. Vlc?ek et al., An ancestral bacterial division system is widespread in eukaryotic mitochondria, Proc. Natl. Acad. Sci. USA, vol.112, pp.10239-10246, 2015.

T. Lepage, D. Bryant, H. Philippe, and N. Lartillot, A general comparison of relaxed molecular clock models, Mol. Biol. Evol, vol.24, pp.2669-2680, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00193697

J. Lombard, P. Lo?pez-garc?á, and D. Moreira, The early evolution of lipid membranes and the three domains of life, Nat. Rev. Microbiol, vol.10, pp.507-515, 2012.

P. Lo?pez-garc?á and D. Moreira, Selective forces for the origin of the eukaryotic nucleus, Bioessays, vol.28, pp.525-533, 2006.

P. Lo?pez-garc?á and D. Moreira, Open questions on the origin of eukaryotes, Trends Ecol. Evol, vol.30, pp.697-708, 2015.

G. D. Love and R. E. Summons, The molecular record of Cryogenian sponges -a response to Antcliffe, Palaeontology, vol.58, pp.1131-1136, 2013.

G. D. Love, E. Grosjean, C. Stalvies, D. A. Fike, J. P. Grotzinger et al., Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, vol.457, pp.718-721, 2009.

M. Lynch and G. K. Marinov, The bioenergetic costs of a gene, Proc. Natl. Acad. Sci. USA, vol.112, pp.15690-15695, 2015.

K. S. Makarova, Y. I. Wolf, S. L. Mekhedov, B. G. Mirkin, and E. V. Koonin, Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell, Nucleic Acids Res, vol.33, pp.4626-4638, 2005.

K. S. Makarova, N. Yutin, S. D. Bell, and E. V. Koonin, Evolution of diverse cell division and vesicle formation systems in Archaea, Nat. Rev. Microbiol, vol.8, pp.731-741, 2010.

W. Martin and E. V. Koonin, Introns and the origin of nucleus-cytosol compartmentalization, Nature, vol.440, pp.41-45, 2006.

W. F. Martin, S. Garg, and V. Zimorski, Endosymbiotic theories for eukaryote origin, Philos. Trans. R. Soc. B. Biol. Sci, vol.370, 2015.

J. O. Mcinerney, W. F. Martin, E. V. Koonin, J. F. Allen, M. Y. Galperin et al., Planctomycetes and eukaryotes: a case of analogy not homology, Bioessays, vol.33, pp.810-817, 2011.

M. Mü-ller, M. Mentel, J. J. Van-hellemond, K. Henze, C. Woehle et al., Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol, Mol. Biol. Rev, vol.76, pp.444-495, 2012.

S. A. Munõz-go?ez, C. H. Slamovits, J. B. Dacks, and J. G. Wideman, The evolution of MICOS: ancestral and derived functions and interactions, Commun. Integr. Biol, vol.8, p.1094593, 2016.

N. Neumann, D. Lundin, and A. M. Poole, Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor, PLoS ONE, vol.5, 2010.

S. Neumann, H. J. Wessels, W. I. Rijpstra, J. S. Sinninghe-damste, B. Kartal et al., Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium K uenenia stuttgartiensis, Mol. Microbiol, vol.94, pp.794-802, 2014.

W. Nijman, K. H. De-bruijne, and M. E. Valkering, Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, Precambrian Res, vol.88, pp.25-52, 1998.

E. Nývltova, C. W. Stairs, I. Hrdý, J. R?dl, J. Mach et al., Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes, Mol. Biol. Evol, vol.32, pp.1039-1055, 2015.

S. O. Obado, M. Brillantes, K. Uryu, W. Zhang, N. E. Ketaren et al., Interactome mapping reveals the evolutionary history of the nuclear pore complex, Stud. Hist. Philos. Biol. Biomed. Sci, vol.14, pp.212-224, 2010.

L. W. Parfrey, D. J. Lahr, A. H. Knoll, and L. A. Katz, Estimating the timing of early eukaryotic diversification with multigene molecular clocks, Proc. Natl. Acad. Sci. USA, vol.108, pp.13624-13629, 2011.

M. M. Pawlowska, N. J. Butterfield, and J. J. Brocks, Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation, Geology, vol.41, pp.103-106, 2013.

M. Pilhofer, G. Rosati, W. Ludwig, K. Schleifer, and G. Petroni, Coexistence of tubulins and ftsZ in different Prosthecobacter species, Mol. Biol. Evol, vol.24, pp.1439-1442, 2007.

A. A. Pittis and T. Gabaldo?n, Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry, Nature, vol.531, pp.101-104, 2016.

A. M. Poole and S. Gribaldo, Eukaryotic origins: how and when was the mitochondrion acquired?, Cold Spring Harb. Perspect. Biol, vol.6, p.15990, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02445763

B. Rasmussen, I. R. Fletcher, J. J. Brocks, and M. R. Kilburn, Reassessing the first appearance of eukaryotes and cyanobacteria, Nature, vol.455, pp.1101-1104, 2008.

K. Raymann, C. Brochier-armanet, and S. Gribaldo, The two-domain tree of life is linked to a new root for the Archaea, Proc. Natl. Acad. Sci. USA, vol.112, pp.6670-6675, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018983

C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, vol.499, pp.431-437, 2013.

M. C. Rivera, R. Jain, J. E. Moore, and J. A. Lake, Genomic evidence for two functionally distinct gene classes, Proc. Natl. Acad. Sci. USA, vol.95, pp.6239-6244, 1998.

N. C. Rochette, C. Brochier-armanet, and M. Gouy, Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes, Mol. Biol. Evol, vol.31, pp.832-845, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045522

A. J. Roger and L. A. Hug, The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation, Philos. Trans. R. Soc. B Biol. Sci, vol.361, pp.1039-1054, 2006.

R. Santarella-mellwig, J. Franke, A. Jaedicke, M. Gorjanacz, U. Bauer et al., The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins, PLoS Biol, vol.8, p.1000281, 2010.

A. Schlacht and J. B. Dacks, Unexpected ancient paralogs and an evolutionary model for the COPII coat complex, Genome Biol. Evol, vol.7, pp.1098-1109, 2015.

A. Schlacht, E. K. Herman, M. J. Klute, M. C. Field, and J. B. Dacks, Missing pieces of an ancient puzzle: evolution of the eukaryotic membranetrafficking system, Cold Spring Harb. Perspect. Biol, vol.6, 2014.

I. Schulz, O. Baumann, M. Samereier, C. Zoglmeier, and R. Gra?f, , 2009.

, Dictyostelium Sun1 is a dynamic membrane protein of both nuclear membranes and required for centrosomal association with clustered centromeres, Eur. J. Cell Biol, vol.88, pp.621-638

Y. Shen, R. Buick, and D. E. Canfield, Isotopic evidence for microbial sulphate reduction in the early Archaean era, Nature, vol.410, pp.77-81, 2001.

Y. Shen, J. Farquhar, A. Masterson, A. J. Kaufman, and R. Buick, Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics, Earth Planet. Sci. Lett, vol.279, pp.383-391, 2009.

M. Simon, L. Jardillier, P. Deschamps, D. Moreira, G. Restoux et al., Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems, Environ. Microbiol, vol.17, pp.3610-3627, 2015.

A. Spang, J. H. Saw, S. L. Jørgensen, K. Zaremba-niedzwiedzka, J. Martijn et al., Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, vol.521, pp.173-179, 2015.

E. E. Stu?eken, R. Buick, B. M. Guy, and M. C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr, Nature, vol.520, pp.666-669, 2015.

R. E. Summons and M. Walter, Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments, Am. J. Sci, vol.290, pp.212-244, 1990.

Y. Ueno, K. Yamada, N. Yoshida, S. Maruyama, and Y. Isozaki, Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era, Nature, vol.440, pp.516-519, 2006.

Y. Ueno, S. Ono, D. Rumble, and S. Maruyama, Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean, Geochim. Cosmochim. Acta, vol.72, pp.5675-5691, 2008.

M. Van-kranendonk, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci. Rev, vol.74, pp.197-240, 2006.

M. Van-kranendonk, P. Philippot, K. Lepot, S. Bodorkos, and F. Pirajno, Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Precambrian Res, vol.167, pp.93-124, 2008.

L. Villanueva, S. Schouten, and J. S. Damste, Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the "lipid divide, Environ. Microbiol, 2016.

J. J. Welch and L. Bromham, Molecular dating when rates vary, Trends Ecol. Evol, vol.20, pp.320-327, 2005.

T. A. Williams and T. M. Embley, Archaeal "dark matter" and the origin of eukaryotes, Genome Biol. Evol, vol.6, pp.474-481, 2014.

C. R. Woese and G. E. Fox, Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. USA, vol.74, pp.5088-5090, 1977.

C. R. Woese, O. Kandler, and M. L. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA, vol.87, pp.4576-4579, 1990.

Y. I. Wolf, K. S. Makarova, N. Yutin, and E. V. Koonin, Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer, Biol. Direct, vol.7, p.46, 2012.

Y. Yan and Z. L. Liu, Significance of eukaryotic organisms in the microfossil flora of Changcheng system, Acta Micropalaeontol. Sin, vol.10, pp.167-180, 1993.

O. Zhaxybayeva, P. Lapierre, and J. P. Gogarten, Ancient gene duplications and the root(s) of the tree of life, Protoplasma, vol.227, pp.53-64, 2005.

E. Zuckerkandl and L. Pauling, Molecules as documents of evolutionary history, J. Theor. Biol, vol.8, pp.357-366, 1965.