A. J. Jeffreys, L. Kauppi, and R. Neumann, Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex, Nat. Genet, vol.29, pp.217-222, 2001.

G. Mcvean, S. R. Myers, S. Hunt, P. Deloukas, D. R. Bentley et al., The fine-scale structure of recombination rate variation in the human genome, Science, vol.304, pp.581-584, 2004.

S. Myers, L. Bottolo, C. Freeman, G. Mcvean, and P. Donnelly, A fine-scale map of recombination rates and hotspots across the human genome, Science, vol.310, pp.321-324, 2005.

H. Brunschwig, L. Levi, E. Ben-david, R. W. Williams, B. Yakir et al., Fine-scale maps of recombination rates and hotspots in the mouse genome, Genetics, vol.191, pp.757-764, 2012.

S. E. Ptak, D. A. Hinds, K. Koehler, B. Nickel, N. Patil et al.,

, Fine-scale recombination patterns differ between chimpanzees and humans, Nat. Genet, vol.37, pp.429-434

W. Winckler, Comparison of fine-scale recombination rates in humans and chimpanzees, Science, vol.308, pp.107-111, 2005.

A. Auton, A fine-scale chimpanzee genetic map from population sequencing, Science, vol.336, pp.193-198, 2012.

F. Smagulova, K. Brick, Y. Pu, R. D. Camerini-otero, and G. V. Petukhova, The evolutionary turnover of recombination hot spots contributes to speciation in mice, Genes Dev, vol.30, pp.266-280, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281480

F. Baudat, J. Buard, C. Grey, A. Fledel-alon, C. Ober et al., PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice, Science, vol.327, pp.836-840, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459048

S. Myers, R. Bowden, A. Tumian, R. E. Bontrop, C. Freeman et al., Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination, Science, vol.327, pp.876-879, 2010.

E. D. Parvanov, P. M. Petkov, and K. Paigen, Prdm9 controls activation of mammalian recombination hotspots, Science, vol.327, pp.835-835, 2010.

C. Grey, P. Barthès, C. Friec, G. Langa, F. Baudat et al., Mouse PRDM9 DNAbinding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination, PLoS Biol, vol.9, 2011.

A. Jeffreys and R. Neumann, Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot, Nat. Genet, vol.31, pp.267-271, 2002.

A. J. Jeffreys and C. A. May, Intense and highly localized gene conversion activity in human meiotic crossover hot spots, Nat. Genet, vol.36, pp.151-156, 2004.

A. Boulton, R. S. Myers, and R. J. Redfield, The hotspot conversion paradox and the evolution of meiotic recombination, Proc. Natl. Acad. Sci. USA, vol.94, pp.8058-8063, 1997.

G. Coop and S. R. Myers, Live hot, die young: transmission distortion in recombination hotspots, 2007.

P. L. Oliver, Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa, PLoS Genet, vol.5, 2009.

H. Kono, M. Tamura, N. Osada, H. Suzuki, K. Abe et al., Prdm9 polymorphism unveils mouse evolutionary tracks, DNA Res, vol.21, pp.315-326, 2014.

J. Buard, E. Rivals, D. Dunoyer-de-segonzac, C. Garres, P. Caminade et al., Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00937288

C. P. Ponting, What are the genomic drivers of the rapid evolution of PRDM9?, Trends Genet, vol.27, pp.165-171, 2011.

F. Ubeda and J. F. Wilkins, The Red Queen theory of recombination hotspots, J. Evol. Biol, vol.24, pp.541-553, 2011.

Y. Lesecque, S. Glémin, N. Lartillot, D. Mouchiroud, and L. Duret, The red queen model of recombination hotspots evolution in the light of archaic and modern human genomes, PLoS Genet, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02046817

A. Jeffreys, J. Holloway, L. Kauppi, C. May, R. Neumann et al., Meiotic recombination hot spots and human DNA diversity, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.359, pp.141-152, 2004.
DOI : 10.1098/rstb.2003.1372

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693298

A. Jeffreys and R. Neumann, The rise and fall of a human recombination hot spot, Nat. Genet, vol.41, pp.625-629, 2009.

C. L. Baker, S. Kajita, M. Walker, R. L. Saxl, N. Raghupathy et al., PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination, PLoS Genet, vol.11, 2015.

B. Davies, Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice, Nature, vol.530, pp.171-176, 2016.

K. Brick, F. Smagulova, P. Khil, R. D. Camerini-otero, and G. V. Petukhova, Genetic recombination is directed away from functional genomic elements in mice, Nature, vol.485, pp.642-645, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877666

A. J. Jeffreys, V. E. Cotton, R. Neumann, and K. Lam, Recombination regulator PRDM9 influences the instability of its own coding sequence in humans, Proc. Natl. Acad. Sci. USA, vol.110, pp.600-605, 2013.

E. Axelsson, M. T. Webster, A. Ratnakumar, . Lupa-consortium, C. P. Ponting et al., Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome, Genome Res, vol.22, pp.51-63, 2012.

S. Singhal, Stable recombination hotspots in birds, Science, vol.350, pp.928-932, 2015.

K. Paigen, J. P. Szatkiewicz, K. Sawyer, N. Leahy, E. D. Parvanov et al., The recombinational anatomy of a mouse chromosome, PLoS Genet, vol.4, 2008.

F. Cole, F. Baudat, C. Grey, S. Keeney, B. De-massy et al., Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics, Nat. Genet, vol.46, pp.1072-1080, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070045

O. Dwyer, J. P. Chisholm, and R. , A mean field model for competition: from neutral ecology to the Red Queen, Ecol. Lett, vol.17, pp.961-969, 2014.

O. Mihola, Z. Trachtulec, C. Vlcek, J. C. Schimenti, and J. Forejt, A mouse speciation gene encodes a meiotic histone H3 methyltransferase, Science, vol.323, pp.373-375, 2009.

, rstb.royalsocietypublishing.org Phil. Trans. R. Soc. B, vol.372, p.20160463