E. Michishita, J. Park, J. Burneskis, J. Barrett, and I. Horikawa, Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins, Molecular Biology of the Cell, vol.16, issue.10, pp.4623-4635, 2005.
DOI : 10.1091/mbc.E05-01-0033

S. Michan and D. Sinclair, Sirtuins in mammals: insights into their biological function, Biochemical Journal, vol.404, issue.1, pp.1-13, 2007.
DOI : 10.1042/BJ20070140

C. Brooks and W. Gu, How does SIRT1 affect metabolism, senescence and cancer?, Nature Reviews Cancer, vol.63, issue.2, pp.123-128, 2009.
DOI : 10.1006/excr.2002.5533

URL : http://europepmc.org/articles/pmc2857763?pdf=render

J. Yu and J. Auwerx, Protein deacetylation by SIRT1: An emerging key post-translational modification in metabolic regulation, Pharmacological Research, vol.62, issue.1, pp.35-41, 2010.
DOI : 10.1016/j.phrs.2009.12.006

J. Yu and J. Auwerx, The Role of Sirtuins in the Control of Metabolic Homeostasis, Annals of the New York Academy of Sciences, vol.23, issue.Suppl 1, pp.10-19, 1173.
DOI : 10.1016/S1388-1981(01)00117-2

URL : https://hal.archives-ouvertes.fr/inserm-00438710

C. Canto and J. Auwerx, Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD+?, Pharmacological Reviews, vol.64, issue.1, pp.166-187, 2012.
DOI : 10.1124/pr.110.003905

J. Luo, A. Nikolaev, S. Imai, D. Chen, and F. Su, Negative Control of p53 by Sir2?? Promotes Cell Survival under Stress, Cell, vol.107, issue.2, pp.137-148, 2001.
DOI : 10.1016/S0092-8674(01)00524-4

H. Vaziri, S. Dessain, N. Eaton, E. Imai, S. Frye et al., (SIRT1) functions as an NAD-dependent p53 deacetylase, Cell, vol.107, pp.2-149, 2001.
DOI : 10.1016/s0092-8674(01)00527-x

URL : https://doi.org/10.1016/s0092-8674(01)00527-x

C. Lerin, J. Rodgers, D. Kalume, S. Kim, and A. Pandey, GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1??, Cell Metabolism, vol.3, issue.6, pp.429-438, 2006.
DOI : 10.1016/j.cmet.2006.04.013

J. Rodgers, C. Lerin, W. Haas, S. Gygi, and B. Spiegelman, Nutrient control of glucose homeostasis through a complex of PGC-1?? and SIRT1, Nature, vol.103, issue.7029, pp.113-118, 2005.
DOI : 10.1101/gad.1164804

A. Brunet, L. Sweeney, J. Sturgill, K. Chua, and P. Greer, Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase, Science, vol.303, issue.5666, pp.2011-2015, 2004.
DOI : 10.1126/science.1094637

M. Motta, N. Divecha, M. Lemieux, C. Kamel, and D. Chen, Mammalian SIRT1 Represses Forkhead Transcription Factors, Cell, vol.116, issue.4, pp.551-563, 2004.
DOI : 10.1016/S0092-8674(04)00126-6

URL : https://doi.org/10.1016/s0092-8674(04)00126-6

X. Li, S. Zhang, G. Blander, J. Tse, and M. Krieger, SIRT1 Deacetylates and Positively Regulates the Nuclear Receptor LXR, Molecular Cell, vol.28, issue.1, pp.91-106, 2007.
DOI : 10.1016/j.molcel.2007.07.032

A. Walker, F. Yang, K. Jiang, J. Ji, and J. Watts, Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP, Genes & Development, vol.24, issue.13, pp.1403-1417, 2010.
DOI : 10.1101/gad.1901210

J. Rodgers and P. Puigserver, Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1, Proceedings of the National Academy of Sciences, vol.6, issue.4, pp.12861-12866, 2007.
DOI : 10.1038/nrm1616

URL : http://www.pnas.org/content/104/31/12861.full.pdf

B. Ponugoti, D. Kim, X. Z. Smith, Z. Miao, and J. , SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism, Journal of Biological Chemistry, vol.54, issue.44, pp.33959-33970, 2010.
DOI : 10.1128/MCB.00553-09

D. Eberle, B. Hegarty, P. Bossard, P. Ferre, and F. Foufelle, SREBP transcription factors: master regulators of lipid homeostasis, Biochimie, vol.86, issue.11, pp.839-848, 2004.
DOI : 10.1016/j.biochi.2004.09.018

N. Dif, V. Euthine, E. Gonnet, M. Laville, and H. Vidal, Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs, Biochemical Journal, vol.400, issue.1, pp.179-188, 2006.
DOI : 10.1042/BJ20060499

URL : https://hal.archives-ouvertes.fr/hal-00478570

I. Guillet-deniau, V. Mieulet, L. Lay, S. Achouri, Y. Carre et al., Sterol Regulatory Element Binding Protein-1c Expression and Action in Rat Muscles: Insulin-Like Effects on the Control of Glycolytic and Lipogenic Enzymes and UCP3 Gene Expression, Diabetes, vol.51, issue.6, pp.1722-1728, 2002.
DOI : 10.2337/diabetes.51.6.1722

S. Rome, V. Lecomte, E. Meugnier, J. Rieusset, and C. Debard, Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle, Physiological Genomics, vol.34, issue.3, pp.327-337, 2008.
DOI : 10.1073/pnas.92.13.6102

URL : https://hal.archives-ouvertes.fr/inserm-00809732

V. Giandomenico, M. Simonsson, E. Gronroos, and J. Ericsson, Coactivator-Dependent Acetylation Stabilizes Members of the SREBP Family of Transcription Factors, Molecular and Cellular Biology, vol.23, issue.7, pp.2587-2599, 2003.
DOI : 10.1128/MCB.23.7.2587-2599.2003

A. Calkin and P. Tontonoz, Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR, Nature Reviews Molecular Cell Biology, vol.296, issue.4, pp.213-224, 2012.
DOI : 10.1152/ajpheart.01075.2008

T. Yoshikawa, H. Shimano, M. Amemiya-kudo, N. Yahagi, and A. Hasty, Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter, Molecular and Cellular Biology, vol.21, issue.9, pp.2991-3000, 2001.
DOI : 10.1128/MCB.21.9.2991-3000.2001

J. Repa, G. Liang, J. Ou, Y. Bashmakov, and J. Lobaccaro, Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta, Genes & Development, vol.14, issue.22, pp.2819-2830, 2000.
DOI : 10.1101/gad.844900

D. Cozzone, C. Debard, N. Dif, R. N. Disse, and E. , Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells, Diabetologia, vol.47, issue.5, pp.990-999, 2006.
DOI : 10.1007/s00125-006-0140-8

V. Lecomte, E. Meugnier, V. Euthine, C. Durand, and D. Freyssenet, A New Role for Sterol Regulatory Element Binding Protein 1 Transcription Factors in the Regulation of Muscle Mass and Muscle Cell Differentiation, Molecular and Cellular Biology, vol.30, issue.5, pp.1182-1198, 2010.
DOI : 10.1128/MCB.00690-09

URL : https://hal.archives-ouvertes.fr/inserm-00817651

L. Qiang, H. Lin, J. Kim-muller, C. Welch, and W. Gu, Proatherogenic Abnormalities of Lipid Metabolism in SirT1 Transgenic Mice Are Mediated through Creb Deacetylation, Cell Metabolism, vol.14, issue.6, pp.758-767, 2011.
DOI : 10.1016/j.cmet.2011.10.007

G. Muscat, B. Wagner, J. Hou, R. Tangirala, and E. Bischoff, Regulation of Cholesterol Homeostasis and Lipid Metabolism in Skeletal Muscle by Liver X Receptors, Journal of Biological Chemistry, vol.42, issue.43, pp.40722-40728, 2002.
DOI : 10.1172/JCI10370

S. Timmers, E. Konings, L. Bilet, R. Houtkooper, and T. Van-de-weijer, Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans, Cell Metabolism, vol.14, issue.5, pp.612-622, 2011.
DOI : 10.1016/j.cmet.2011.10.002

J. Um, S. Park, H. Kang, S. Yang, and M. Foretz, AMP-Activated Protein Kinase-Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol, Diabetes, vol.59, issue.3, pp.554-563, 2010.
DOI : 10.2337/db09-0482

C. Canto, L. Jiang, A. Deshmukh, C. Mataki, and A. Coste, Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle, Cell Metabolism, vol.11, issue.3, pp.213-219, 2010.
DOI : 10.1016/j.cmet.2010.02.006

C. Canto, Z. Gerhart-hines, J. Feige, M. Lagouge, and L. Noriega, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.276, issue.7241, pp.1056-1060, 2009.
DOI : 10.1152/japplphysiol.00349.2003

URL : https://hal.archives-ouvertes.fr/inserm-00383329

D. Erion, S. Yonemitsu, Y. Nie, Y. Nagai, and M. Gillum, SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats, Proceedings of the National Academy of Sciences, vol.37, issue.10, pp.11288-11293, 2009.
DOI : 10.1139/o59-099

A. Purushotham, T. Schug, Q. Xu, S. Surapureddi, and X. Guo, Hepatocyte-Specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation, Cell Metabolism, vol.9, issue.4, pp.327-338, 2009.
DOI : 10.1016/j.cmet.2009.02.006

Y. Gosmain, N. Dif, V. Berbe, E. Loizon, and J. Rieusset, Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues, Journal of Lipid Research, vol.385, issue.4, pp.697-705, 2005.
DOI : 10.1074/jbc.M111041200

Y. Gosmain, E. Lefai, S. Ryser, M. Roques, and H. Vidal, Sterol Regulatory Element-Binding Protein-1 Mediates the Effect of Insulin on Hexokinase II Gene Expression in Human Muscle Cells, Diabetes, vol.53, issue.2, pp.321-329, 2004.
DOI : 10.2337/diabetes.53.2.321

P. Ducluzeau, N. Perretti, M. Laville, F. Andreelli, and N. Vega, Regulation by Insulin of Gene Expression in Human Skeletal Muscle and Adipose Tissue: Evidence for Specific Defects in Type 2 Diabetes, Diabetes, vol.50, issue.5, pp.1134-1142, 2001.
DOI : 10.2337/diabetes.50.5.1134

S. Frojdo, C. Durand, L. Molin, A. Carey, and A. El-osta, Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1, Molecular and Cellular Endocrinology, vol.335, issue.2, pp.166-176, 2011.
DOI : 10.1016/j.mce.2011.01.008

URL : https://hal.archives-ouvertes.fr/hal-00672295

H. Cheng, R. Mostoslavsky, S. Saito, J. Manis, and Y. Gu, Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice, Proceedings of the National Academy of Sciences, vol.21, issue.22, pp.10794-10799, 2003.
DOI : 10.1093/emboj/cdf616

K. Abdelmohsen, R. Pullmann, A. Lal, H. Kim, and S. Galban, Phosphorylation of HuR by Chk2 Regulates SIRT1 Expression, Molecular Cell, vol.25, issue.4, pp.543-557, 2007.
DOI : 10.1016/j.molcel.2007.01.011

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

M. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

J. Hellemans, G. Mortier, D. Paepe, A. Speleman, F. Vandesompele et al., qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biology, vol.8, issue.2, p.19, 2007.
DOI : 10.1186/gb-2007-8-2-r19

A. Durieux, R. Bonnefoy, and D. Freyssenet, Kinetic of transgene expression after electrotransfer into skeletal muscle: Importance of promoter origin/strength, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1725, issue.3, pp.403-409, 2005.
DOI : 10.1016/j.bbagen.2005.06.016

A. Durieux, R. Bonnefoy, C. Manissolle, and D. Freyssenet, High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator, Biochemical and Biophysical Research Communications, vol.296, issue.2, pp.443-450, 2002.
DOI : 10.1016/S0006-291X(02)00901-4

A. Durieux, R. Bonnefoy, T. Busso, and D. Freyssenet, In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage, The Journal of Gene Medicine, vol.6, issue.7, pp.809-816, 2004.
DOI : 10.1002/jgm.534