D. Lockner, J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, Quasi-static fault growth and shear fracture energy in granite, Nature, vol.350, issue.6313, p.39, 1991.
DOI : 10.1038/350039a0

D. Lockner, The role of acoustic emission in the study of rock fracture, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.30, issue.7, p.883, 1993.
DOI : 10.1016/0148-9062(93)90041-B

P. Diodati, P. Bak, and F. Marchesoni, Acoustic emission at the Stromboli volcano: scaling laws and seismic activity, Earth and Planetary Science Letters, vol.182, issue.3-4, p.253, 2000.
DOI : 10.1016/S0012-821X(00)00248-X

D. Turcotte and R. Shcherbakov, Can Damage Mechanics Explain Temporal Scaling Laws in Brittle Fracture and Seismicity?, Pure and Applied Geophysics, vol.163, issue.5-6, p.1031, 2006.
DOI : 10.1007/s00024-006-0058-6

A. Garcimartin, A. Guarino, L. Bellon, and S. Ciliberto, Statistical Properties of Fracture Precursors, Physical Review Letters, vol.77, issue.17, p.3202, 1997.
DOI : 10.1103/PhysRevLett.77.2503

URL : https://hal.archives-ouvertes.fr/ensl-00179742

A. Guarino, A. Garcimartin, and S. Ciliberto, An experimental test of the critical behaviour of fracture precursors, The European Physical Journal B, vol.6, issue.1, p.13, 1998.
DOI : 10.1007/s100510050521

A. Guarino, A. Garcimartin, and S. Ciliberto, Failure time and microcrack nucleation, Europhysics Letters (EPL), vol.47, issue.4, p.456, 1999.
DOI : 10.1209/epl/i1999-00409-9

URL : http://arxiv.org/pdf/cond-mat/9905161v1.pdf

C. Maes, A. Van-moffaert, H. Frederix, and H. Strauven, Criticality in creep experiments on cellular glass, Physical Review B, vol.49, issue.9, p.4987, 1998.
DOI : 10.1063/1.881515

A. Petri, G. Paparo, A. Vespignani, A. Alippi, and M. Costantini, Experimental Evidence for Critical Dynamics in Microfracturing Processes, Physical Review Letters, vol.68, issue.25, p.3423, 1994.
DOI : 10.1103/PhysRevLett.68.2417

A. Carpinteri, G. Lacidogna, and G. Niccolini, Critical Behaviour in Concrete Structures and Damage Localization by Acoustic Emission, Key Engineering Materials, vol.312, p.305, 2006.
DOI : 10.4028/www.scientific.net/KEM.312.305

L. Salminen, A. Tolvanen, and M. Alava, Acoustic Emission from Paper Fracture, Physical Review Letters, vol.350, issue.18, p.185503, 2002.
DOI : 10.1103/PhysRevLett.87.096107

URL : https://aaltodoc.aalto.fi:443/bitstream/123456789/18811/1/A1_salminen_l_i_2002.pdf

E. Vives, J. Ortín, L. Mañosa, R. , I. Pérez-magrané et al., Distributions of avalanches in martensitic transformations, Physical Review Letters, vol.36, issue.11, p.1694, 1994.
DOI : 10.1016/0001-6160(88)90332-X

T. Richeton, J. Weiss, and F. Louchet, Dislocation avalanches: Role of temperature, grain size and strain hardening, Acta Materialia, vol.53, issue.16, p.4463, 2005.
DOI : 10.1016/j.actamat.2005.06.007

URL : https://hal.archives-ouvertes.fr/insu-00374918

T. Richeton, J. Weiss, and F. Louchet, Breakdown of avalanche critical behaviour in polycrystalline plasticity, Nature Materials, vol.34, issue.6, p.465, 2005.
DOI : 10.1029/96RG02808

URL : https://hal.archives-ouvertes.fr/insu-00374916

J. Weiss and F. Louchet, Seismology of plastic deformation, Scripta Materialia, vol.54, issue.5, p.747, 2006.
DOI : 10.1016/j.scriptamat.2005.10.056

URL : https://hal.archives-ouvertes.fr/insu-00375773

M. Shaira, N. Godin, P. Guy, L. Vanel, and J. Courbon, Evaluation of the strain-induced martensitic transformation by acoustic emission monitoring in 304L austenitic stainless steel: Identification of the AE signature of the martensitic transformation and power-law statistics, Materials Science and Engineering: A, vol.492, issue.1-2, p.392, 2008.
DOI : 10.1016/j.msea.2008.04.068

URL : https://hal.archives-ouvertes.fr/hal-00433953

J. Faillettaz, F. Louchet, and J. Grasso, Two-Threshold Model for Scaling Laws of Noninteracting Snow Avalanches, Physical Review Letters, vol.43, issue.20, p.208001, 2004.
DOI : 10.1007/s100510050194

E. Bouchaud, Scaling properties of cracks, Journal of Physics: Condensed Matter, vol.9, issue.21, p.4319, 1997.
DOI : 10.1088/0953-8984/9/21/002

B. Gutenberg and C. Richter, Seismicity of the Earth and Associated Phenomena, 1954.

A. Sornette and D. Sornette, Earthquake rupture as a critical point: consequences for telluric precursors, Tectonophysics, vol.179, issue.3-4, p.327, 1990.
DOI : 10.1016/0040-1951(90)90298-M

K. Chen, P. Bak, and S. Obukhov, Self-organized criticality in a crack-propagation model of earthquakes, Physical Review A, vol.13, issue.2, p.625, 1991.
DOI : 10.1103/PhysRevB.13.4877

D. Sornette and C. Vanneste, Dynamics and memory effects in rupture of thermal fuse networks, Physical Review Letters, vol.39, issue.5, p.612, 1992.
DOI : 10.1103/PhysRevB.39.2678

S. Zapperi, P. Ray, H. Stanley, and A. Vespignani, First-Order Transition in the Breakdown of Disordered Media, Physical Review Letters, vol.4, issue.8, p.1408, 1997.
DOI : 10.1051/jp1:1994133

S. Zapperi, P. Ray, H. Stanley, and A. Vespignani, Avalanches in breakdown and fracture processes, Physical Review E, vol.80, issue.5, p.5049, 1999.
DOI : 10.1103/PhysRevLett.80.1916

URL : https://repository.library.northeastern.edu/files/neu:331384/fulltext.pdf

H. Daniels, The Statistical Theory of the Strength of Bundles of Threads. I, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.183, issue.995, p.405, 1945.
DOI : 10.1098/rspa.1945.0011

H. Herrmann and S. Roux, Statistical models for the fracture of disordered media, 1990.

J. Andersen, D. Sornette, and K. Leung, Tricritical Behavior in Rupture Induced by Disorder, Physical Review Letters, vol.73, issue.11, p.2140, 1997.
DOI : 10.1103/PhysRevLett.73.3423

URL : http://arxiv.org/pdf/cond-mat/9609022

F. Kun, Y. Moreno, R. Hidalgo, and H. Herrmann, Creep rupture has two universality classes, Europhysics Letters (EPL), vol.63, issue.3, p.347, 2003.
DOI : 10.1209/epl/i2003-00469-9

Y. Moreno, J. Gomez, and A. Pacheco, Phase transitions in load transfer models of fracture, Physica A: Statistical Mechanics and its Applications, vol.296, issue.1-2, p.9, 2001.
DOI : 10.1016/S0378-4371(01)00018-8

R. Hidalgo, F. Kun, and H. Hermann, Creep rupture of viscoelastic fiber bundles, Physical Review E, vol.9, issue.3, p.32502, 2002.
DOI : 10.1103/PhysRevE.63.025104

R. Hidalgo, F. Kun, and H. Herrmann, Slow relaxation of fiber composites, variable range of interaction approach, Physica A: Statistical Mechanics and its Applications, vol.347, p.402, 2005.
DOI : 10.1016/j.physa.2004.08.039

A. Politi, S. Ciliberto, and R. Scorretti, Failure time in the fiber-bundle model with thermal noise and disorder, Physical Review E, vol.30, issue.2, p.26107, 2002.
DOI : 10.1088/0305-4470/30/23/004

S. Roux, Thermally activated breakdown in the fiber-bundle model, Physical Review E, vol.12, issue.5, p.6164, 2000.
DOI : 10.1007/s100510050990

S. Ciliberto, A. Guarino, and R. Scorretti, The effect of disorder on the fracture nucleation process, Physica D: Nonlinear Phenomena, vol.158, issue.1-4, p.83, 2001.
DOI : 10.1016/S0167-2789(01)00306-2

R. Scorretti, S. Ciliberto, and A. Guarino, Disorder enhances the effects of thermal noise in the fiber bundle model, Europhysics Letters (EPL), vol.55, issue.5, p.626, 2001.
DOI : 10.1209/epl/i2001-00462-x

M. Sahimi and S. Arbabi, Scaling Laws for Fracture of Heterogeneous Materials and Rock, Physical Review Letters, vol.94, issue.17, p.3689, 1996.
DOI : 10.1007/BF01212352

Y. Jei, S. Ouaskit, R. Nassif, Y. Boughaleb, H. Nechad et al., Critical fracturing phenomenon in heterogeneous materials under external mechanical stress, Physica A: Statistical Mechanics and its Applications, vol.358, issue.1, p.10, 2005.
DOI : 10.1016/j.physa.2005.06.040

URL : https://hal.archives-ouvertes.fr/hal-00436809

M. Minozzi, G. Caldarelli, L. Pietronero, and S. Zapperi, Dynamic fracture model for acoustic emission, The European Physical Journal B - Condensed Matter, vol.36, issue.2, p.203, 2003.
DOI : 10.1140/epjb/e2003-00336-7

URL : http://arxiv.org/pdf/cond-mat/0207433

S. Zapperi, C. Castellano, F. Colaiori, and G. Durin, Signature of effective mass in crackling-noise asymmetry, Nature Physics, vol.87, issue.276, p.46, 2005.
DOI : 10.1103/PhysRevLett.87.096107

N. Godin, S. Huguet, R. Gaertner, and L. Salmon, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers, NDT & E International, vol.37, issue.4, p.253, 2004.
DOI : 10.1016/j.ndteint.2003.09.010

URL : https://hal.archives-ouvertes.fr/hal-00474933

M. Moevus, N. Godin, D. Rouby, R. 'mili, M. Reynaud et al., Analysis of damage mechanisms and associated acoustic emission in two SiCf/[Si???B???C] composites exhibiting different tensile behaviours. Part II: Unsupervised acoustic emission data clustering, Composites Science and Technology, vol.68, issue.6, p.1258, 2007.
DOI : 10.1016/j.compscitech.2007.12.002

URL : https://hal.archives-ouvertes.fr/hal-00434006

L. Gibson and M. Ashby, Cellular Solids : structure and properties, Cambridge, 1997.
DOI : 10.1017/CBO9781139878326

T. C. Triantafillou, J. Zhang, T. L. Shercliff, L. J. Gibson, and M. Ashby, Failure surfaces for cellular materials under multiaxial loads???II. Comparison of models with experiment, International Journal of Mechanical Sciences, vol.31, issue.9, p.665, 1989.
DOI : 10.1016/S0020-7403(89)80002-5

N. Hilyard, Mechanics of Cellular Plastics, Int. J. Mech. Sci, vol.45, p.1531, 1982.

A. N. Gent and A. Thomas, Failure of foamed elastic materials, Journal of Applied Polymer Science, vol.2, issue.6, p.354, 1959.
DOI : 10.1002/app.1959.070020618

J. Lerderman, The prediction of the tensile properties of flexible foams, Journal of Applied Polymer Science, vol.15, issue.3, p.693, 1971.
DOI : 10.1002/app.1971.070150314

P. Barma, M. Rhodes, and R. Salovey, Mechanical properties of particulate???filled polyurethane foams, Journal of Applied Physics, vol.13, issue.10, p.4985, 1978.
DOI : 10.1177/0021955X7701300601

R. Christensen, Mechanics of low density materials, Journal of the Mechanics and Physics of Solids, vol.34, issue.6, p.563, 1986.
DOI : 10.1016/0022-5096(86)90037-2

W. Warren and A. Kraynik, The Linear Elastic Properties of Open-Cell Foams, Journal of Applied Mechanics, vol.55, issue.2, p.341, 1988.
DOI : 10.1115/1.3173680

H. X. Zhu, N. J. Mills, and J. Knott, Analysis of the high strain compression of open-cell foams, Journal of the Mechanics and Physics of Solids, vol.45, issue.11-12, p.1875, 1997.
DOI : 10.1016/S0022-5096(97)00027-6

F. Saint-michel, L. Chazeau, and J. Cavaillé, Mechanical properties of high density polyurethane foams: II Effect of the filler size, Composites Science and Technology, vol.66, issue.15, p.2709, 2006.
DOI : 10.1016/j.compscitech.2006.03.008

URL : https://hal.archives-ouvertes.fr/hal-00436135

F. Saint-michel, L. Chazeau, J. Cavaillé, and E. Chabert, Mechanical properties of high density polyurethane foams: I. Effect of the density, Composites Science and Technology, vol.66, issue.15, p.2700, 2006.
DOI : 10.1016/j.compscitech.2006.03.009

URL : https://hal.archives-ouvertes.fr/hal-00436166

M. K. Neilsen, R. Krieg, and H. Schreyer, A constitutive theory for rigid polyurethane foam, Polymer Engineering and Science, vol.53, issue.5, p.387, 1995.
DOI : 10.1557/PROC-207-9

J. Zhang, Z. Lin, A. Wong, N. Kikuchi, V. C. Li et al., Constitutive Modeling and Material Characterization of Polymeric Foams, Journal of Engineering Materials and Technology, vol.32, issue.3, p.284, 1997.
DOI : 10.1115/1.2812258

V. S. Deshpande and N. Fleck, Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids, vol.48, issue.6-7, p.1253, 2000.
DOI : 10.1016/S0022-5096(99)00082-4

URL : http://www-mech.eng.cam.ac.uk/profiles/vsd/papers/jmps_foam_const.pdf

V. Shulmeister, M. W. Van-der-burg, E. Van-der-giessen, and R. Marissen, A numerical study of large deformations of low-density elastomeric open-cell foams, Mechanics of Materials, vol.30, issue.2, p.125, 1998.
DOI : 10.1016/S0167-6636(98)00033-7

S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia, vol.53, issue.3, p.719, 2005.
DOI : 10.1016/j.actamat.2004.10.024

URL : https://hal.archives-ouvertes.fr/hal-00436799

A. Siegmann, S. Kenig, D. Alperstein, and M. Narkis, Mechanical behavior of reinforced polyurethane foams, Polymer Composites, vol.14, issue.2, p.113, 1983.
DOI : 10.1002/pc.750040206

F. Ramsteinern, N. Fell, and S. Forster, Testing the deformation behaviour of polymer foams, Polymer Testing, vol.20, issue.6, p.661, 2001.
DOI : 10.1016/S0142-9418(00)00090-8

S. Deschanel, L. Vanel, G. Vigier, N. Godin, and S. Ciliberto, Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density, International Journal of Fracture, vol.77, issue.1-4, pp.87-98, 2006.
DOI : 10.1017/CBO9781139878326

URL : https://hal.archives-ouvertes.fr/ensl-00156937

J. S. Huang and L. Gibson, Creep of polymer foams, Journal of Materials Science, vol.22, issue.3, p.637, 1991.
DOI : 10.1115/1.3424914

T. Chen and J. Huang, Creep-rupturing of open-cell foams, Acta Materialia, vol.56, issue.10, p.2283, 2008.
DOI : 10.1016/j.actamat.2008.01.012

S. Roux, F. Hild, P. Viot, and D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites Part A: Applied Science and Manufacturing, vol.39, issue.8, p.1253, 2008.
DOI : 10.1016/j.compositesa.2007.11.011

URL : https://hal.archives-ouvertes.fr/hal-00198126

Y. Wang and A. Cuitiño, Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation, International Journal of Solids and Structures, vol.39, issue.13-14, p.3777, 2002.
DOI : 10.1016/S0020-7683(02)00176-2

G. Subhash, Q. Liu, and X. Gao, Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams, International Journal of Impact Engineering, vol.32, issue.7, p.1113, 2006.
DOI : 10.1016/j.ijimpeng.2004.11.006

S. Ouellet, D. Cronin, and M. Worswick, Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions, Polymer Testing, vol.25, issue.6, p.731, 2006.
DOI : 10.1016/j.polymertesting.2006.05.005

C. Fowlkes, Fracture toughness tests of a rigid polyurethane foam, International Journal of Fracture, vol.34, issue.No. 6, p.99, 1974.
DOI : 10.1007/BF00955084

T. Cotgreave and J. Shortall, The fracture toughness of reinforced polyurethane foam, Journal of Materials Science, vol.6, issue.No. 1, p.722, 1978.
DOI : 10.1007/BF00570506

S. K. Maiti, M. F. Ashby, and L. Gibson, Fracture toughness of brittle cellular solids, Scripta Metallurgica, vol.18, issue.3, p.213, 1984.
DOI : 10.1016/0036-9748(84)90510-6

M. E. Kabir, M. Saha, and S. Jeelani, Tensile and fracture behavior of polymer foams, Materials Science and Engineering: A, vol.429, issue.1-2, p.225, 2006.
DOI : 10.1016/j.msea.2006.05.133

D. Lockner, J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, in Fault Mechanics and Transport Properties of Rocks, pp.3-31, 1992.

H. Herrmann, Some new results on fracture, Physica A: Statistical Mechanics and its Applications, vol.221, issue.1-3, p.125, 1995.
DOI : 10.1016/0378-4371(95)00225-V

URL : http://www.ica1.uni-stuttgart.de/Recent_publications/Papers/taipei/taipei.ps.gz

X. Lei, K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu et al., Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock, Journal of Structural Geology, vol.26, issue.2, p.247, 2004.
DOI : 10.1016/S0191-8141(03)00095-6

URL : https://hal.archives-ouvertes.fr/hal-00108322

X. H. Xu, S. P. Ma, M. F. Xia, F. J. Ke, and Y. Bai, Damage evaluation and damage localization of rock, Theoretical and Applied Fracture Mechanics, vol.42, issue.2, p.131, 2004.
DOI : 10.1016/j.tafmec.2004.08.002

S. Huguet, N. Godin, R. Gaertner, L. Salmon, and D. Villard, Use of acoustic emission to identify damage modes in glass fibre reinforced polyester, Composites Science and Technology, vol.62, issue.10-11, p.1433, 2002.
DOI : 10.1016/S0266-3538(02)00087-8

URL : https://hal.archives-ouvertes.fr/hal-00475466

A. Roques, M. Browne, J. Thompson, C. Rowland, and A. Taylor, Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique, Biomaterials, vol.25, issue.5, p.769, 2004.
DOI : 10.1016/S0142-9612(03)00581-7

E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef et al., X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Composites Science and Technology, vol.63, issue.16, p.2431, 2003.
DOI : 10.1016/S0266-3538(03)00276-8

URL : https://hal.archives-ouvertes.fr/hal-00475150

E. Maire, V. Carmona, J. Courbon, and L. W. , Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests, Acta Materialia, vol.55, issue.20, p.6806, 2007.
DOI : 10.1016/j.actamat.2007.08.043

URL : https://hal.archives-ouvertes.fr/hal-00434199

L. Salvo, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.200, p.273, 2003.
DOI : 10.1016/S0168-583X(02)01689-0

URL : https://hal.archives-ouvertes.fr/hal-00475146

J. Dawson and J. Shortall, The microstructure of rigid polyurethane foams, Journal of Materials Science, vol.14, issue.1, p.220, 1982.
DOI : 10.1007/BF00809056

N. Shahidzadeh-bonn, P. Vié, X. Chateau, J. Roux, and D. Bonn, Delayed Fracture in Porous Media, Physical Review Letters, vol.221, issue.17, p.175501, 2005.
DOI : 10.1098/rsta.1921.0006

F. Noble, Acoustic emission and fatigue crack growth in rigid polyurethane foam, Journal of Materials Science, vol.13, issue.6, p.1827, 1983.
DOI : 10.1007/BF00542079

L. C. Krysac and J. Maynard, Evidence for the Role of Propagating Stress Waves during Fracture, Physical Review Letters, vol.38, issue.20, p.4428, 1998.
DOI : 10.1016/0956-7151(90)90263-G