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Résumé – Du point de vue du traitement du signal sur graphe, la méthode classique de classification dite de “clustering spectral” apparaı̂t

comme un banc de filtres passe-bas idéal. Intégrant une adaptation de la détection multiéchelle de communautés de [11] au concept de cœurs de

communautés [8], nous proposons une méthode de classification basée sur d’autres bancs de filtres plus adaptés aux données. Dans le cadre d’une

classification de textures de papiers photos utile en histoire de l’art, les résultats de cette méthode s’avèrent plus riches et aisément interprétables.

Abstract – From the point of view of graph signal processing, we show that spectral clustering is equivalent to an ideal low-pass filterbank.

Building upon previous multiscale community detection ideas [11], and integrating the concept of community cores [8], we propose a data-driven

filterbank-based classification method. We apply this method to the texture classification of photographic papers useful to art historians, and we

show that it provides a richer and more informative description of the data’s structure in clusters.

1 Introduction

An element for historical study of photographic papers is to

carefully look at their surface texture as this provides interest-

ing facts about working practices of manufacturers as well as

photographs printed on them [5]. To analyze raking light im-

ages of photographic papers, the method in [1] combines tex-

ture analysis using Hyperbolic Wavelet Transforms and spec-

tral clustering, and shows the relevance of the approach to gain

insights into these photographic prints for, e.g., datation, au-

thentification, or questioning stylistic issues.

In this context, we show how to improve unsupervised spec-

tral clustering, used in [1], for a finer grouping of photographic

prints in clusters. A shortcoming of spectral clustering is that

the number K of clusters is arbitrary, and one needs to use

external criteria (e.g., AIC, BIC) to estimate it [3]. Also, it out-

puts a strict partition where outliers, for instance, are necessar-

ily associated to the closest cluster instead of (ideally) staying

unlabelled. We propose an alternative to these shortcomings by

revisiting spectral clustering as being an ideal low-pass filtering

on graphs and considering other multiscale lowpass filterbanks

instead, following what has been done for community detection

in networks [11]. We show that a measure of cluster stability

combined with a notion of cluster core provide us with tools to

estimate the relevant number(s) of clusters as well as the rele-

vance of a given print’s attribution to a cluster. This is applied

to a dataset of photographic papers.

Work supported by the GRAPHSIP project, ANR-14-CE27-0001-02.

2 Photographic paper characterization

Within the Historic Photographic Paper Classification Chal-

lenge [5] developed by P. Messier and C.R. Johnson, a dataset

of 120 non-printed photographic paper samples has been col-

lected, and the images of their textures were made publicly

available (http://papertextureid.org). These sam-

ples cover a wide range of photographic papers, in terms of

manufacturer, brand, texture, reflectance and year of produc-

tion (all that being the metadata provided). It consists in: (1)

samples from one same paper sheet (groups G0 to G2); (2)

samples from paper sheets with the same metadata (G3 to G5);

(3) samples that vary in production date (G6 to G8); (4) a col-

lection of 30 other sheets (labelled o for ‘others’) representing

a variety of photographic textures and metadata. An imaging

system, name TextureScope and fully described in [5], uses a

raking light and a microscope to depict 1.00×1.35 cm2 of a pa-

per surface. The images are digitized in images of 1536×2080
pixels. This imaging method is apt at capturing both micro-

scopic features and macroscopic (ir)regularities.

For texture characterization, we follow strictly the method

proposed in [1] to obtain a distance between the textures of

any two photographic prints. The idea is to make use of the

Hyperbolic Wavelet Transform (HWT), that allows us to cap-

ture both anisotropy in the textures and their scale-invariant

behaviours [7]. The output is a cepstral-type distance matrix

Cab between the multiscale representations (in terms of HWT)

of papers a and b. A non-linear transformation is applied to

change the distance matrix C into a similarity matrix of ele-



node (or data point)

n
o
d
e
(o
r
d
a
ta

p
o
in
t)

Distance and similarity matrices(a)

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

20

40

60

80

100

120

Spectral filterbanks

F
il
te
r
va
lu
e

Eigenvalues

(b)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

one cluster per color

C
o
si
n
e
d
is
ta
n
ce

Spectral clustering, K=7

G1, G3, 4o

G8, 4o

G2, G5, 7o

69, 70, 8o

G4, G6, 1o

G0

G7, 5o

(c)

0

0.2

0.4

0.6

0.8

1

FIG. 1: (a) Distance matrix (C) in lower triangle and similarity matrix (W) in upper triangle; each triangle is normalized to unity.

Groups of similar papers G0 to G8 are separated by red lines. (b) Filterbanks for spectral clustering (ideal low-pass lK in blue, for

K = 7, 10) and for scaling functions (smooth low pass hs in black, for various values of s). Red dots represent Lrw’s eigenvalues.

(c) Dendrogram computed with spectral clustering, with K = 7 clusters identified.

ments Wab = exp(−Cab/ǫ), where ǫ is a constant assessing

the typical closeness between images on the dataset. This is

illustrated in Fig. 1 (a) and W appears to have larger values

within groups, than between them.

3 Spectral clustering revisited

3.1 Background: spectral clustering

Unsupervised clustering can be interpreted, thanks to the simi-

larity matrix W, as a partition problem of an undirected weighted

graph where each node is one of the N data samples. Let G
be this graph and W the weighted and symmetric adjacency

matrix; S is a diagonal matrix with Saa =
∑

b 6=a Wab. The

random walk Laplacian matrix is Lrw = IN − S
−1

W, where

IN is the identity matrix of size N . We recall (see, e.g. [6])

that Lrw is diagonalizable, with eigenvalues sorted such that:

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λN ≤ 2; and normalized eigen-

vectors, here collected in a matrix: χ = (χ1|χ2| . . . |χN ).
To partition the graph, spectral clustering [3, 6] computes the

first K eigenvectors and creates a feature vector fK,a ∈ R
K

for each node a: ∀k ∈ [1,K] fK,a(k) = χk(a), which is

in turn used to obtain K clusters thanks to, e.g., K-means or

hierarchical clustering.

3.2 Filterbanks-based spectral graph clustering

Spectral clustering’s feature vectors. An analogy between

signals on graphs and usual signals [9] suggests to interpret

the spectrum of Lrw as a Fourier domain for graphs, hence

defining filters on graphs as diagonal operators after change

of basis with χ−1. It turns out that the features fK,a can be

obtained by ideal low-pass filtering of the Delta function δa
(localized at node a). Indeed, let lK be the step function where

lK(λ) = 1 if λ ≤ λK and 0 otherwise. We define LK the

diagonal matrix for which LK(i, i) = lK(λi). Then:

fK,a = LKχ−1δa ∈ R
N , (1)

when filling the last N −K values with 0’s. Henceforth, spec-

tral clustering is equivalent to clustering using low-pass filter-

ing of the local descriptors δa of each node a of the graph G.

Scaling function filterbanks’ feature vectors. This analogy

opens the way to use other (than lK) filter kernels to define

feature vectors. Especially, one can rely on a notion of scale as

in [11], where it is shown that a wavelet filterbank on graphs, as

defined in [2], behaves well to detect communities in complex

networks. To stay in this paper’s scope, we limit the analy-

sis to scaling function filterbanks, defined from a low-pass fil-

ter kernel function h designed in the “Fourier” space [0, 2], as

in [10]. At every scale s ∈ R
+∗, a discrete filter vector hs is

∀i ∈ [1, N ] hs(i) = h(sλi), and is used to define a new fea-

ture vector: fs,a = Hsχ
−1δa where Hs = diag(hs). To ex-

plain our terminology, note that χfs,a may be interpreted as the

scaling function at scale s centered around node a (see [10]).

These filterbanks are illustrated in Fig. 1 (b).

Distance matrix. To compute the distance matrix Ds be-

tween the scaling function’s feature vectors, we use the cosine

distance, as it was shown in [11] to be a good measurement of

the similarity between two data a and b at scale s :

Ds(a, b) = 1−
f⊤
s,afs,b

||fs,a||2 ||fs,b||2
. (2)

In spectral clustering, there is no consensus on which distance

to choose. Here, for a fair comparison with the scaling function

method, the cosine distance is also used.

Clustering In both cases, we use a hierarchical agglomera-

tive clustering with average-linkage [3], that outputs a dendro-

gram from the distance matrix. In the case of spectral cluster-

ing (resp. scaling function filterbanks), the dendrogram is cut

in order to create K clusters (resp. at the largest global gap as

in [11]). A multiscale analysis in the case of spectral clustering

(resp. scaling function filterbanks) is obtained by varying K
(resp. s ∈ R

+∗). Fig. 1 (c) shows the result for K = 7.
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FIG. 2: Stability (left) and number of clusters (right), vs. scale.

The red points are local maxima of the stability, hence the

scales of interest. The confidence intervals around the number

of clusters are from the J (possibly different) partitions {P j
s }.

3.3 Stochastic filterbanks-based clustering

Following Section 5 of [11], we take advantage of the fast

graph wavelet transform of η random vectors to directly esti-

mate Ds(a, b) knowing Lrw and hs, without computing each

feature vector fs,a. A proof is explicit in [11] when considering

wavelets. For scaling functions, the results hold if one removes

the zero frequency. This method is now stochastic: at every

scale s, one may synthesize J sets of η random vectors, and

obtain J partitions P j
s in clusters. This stochasticity allows us

to develop two helpful notions: the stability of partitions [11],

telling which scales (and henceforth which number of clusters)

are relevant; and the relevance of the attribution of a node to

a cluster, probed using the cluster cores developed in [8].

Stability γa(s) is defined for each scale s as the mean of the

similarity between all pairs of partitions of {P j
s }j∈[1,J]:

γa(s) =
2

J(J − 1)

∑

(i,j)∈[1,J]2,i 6=j

ari(P i
s , P

j
s ) (3)

where the function ari is the Adjusted Rand Index, measuring

the similarity between partitions [4]. The more stable is the

partition at scale s, i.e. the more interesting this scale is, the

closer to 1 will be γa(s). Only the most stable scales provides

partitions that are worth retaining.

We scan a sampled set of scales, typically 50 logarithmically

spaced scales between two boundaries automatically detected

by the algorithm [11] and we output the most stable scales s∗

(local maxima of γa(s)) and their associated partitions. This

also gives an estimation of the number K of clusters that are

relevant to keep. It bypasses the issue of choosing or estimating

K in classical spectral clustering. This is illustrated in Fig. 2.

Detecting cluster cores. Following [8], two nodes a and b
are in a cluster core if, in each of the J partitions, they are al-

ways classified in the same cluster. Clusters of size 1 are not

counted as cores. Given {P j
s∗}j∈[1,J], we obtain, for each sta-

ble scale s∗, a list of cluster cores {Cz}z∈[1,Z] and the associa-

tion of nodes to them returned as (P c
s∗ , ρs∗) ∈ (RN )2:

• if a belongs to core Cz , then P c
s∗(a) = z and ρs∗(a) = 1.

• else, we compute the core Cz′ in which it is most often

classified and write P c
s∗(a) = z′, and ρs∗(a) = nz′/J
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FIG. 3: Estimated clusters (at each scale, a cluster is a color).

First column: groups Gi in the dataset (separated by red lines).

Middle: cores from scaling functions (one scale s∗ per col-

umn); unclassified samples are in deep blue (value 0). Right:

clusters from spectral clustering (one K per column).

the relative frequency with which it is associated to z′. In

some cases, a is always in his own disregarded cluster of

size 1 and kept unclassified (P c
s (a) = 0 and ρs(a) = 0).

At scale s∗, if ρs∗(a) = 1, then the algorithm’s user may con-

fidently classify data a in cluster core P c
s∗(a). If not, then a

cannot be classified with full reliability with other points in this

dataset, and P c
s∗(a) is only an indication of its closest core.

4 Results

We apply the proposed stochastic scaling function filterbanks-

based clustering on the 120 photographic paper samples; with

η = 100, J = 80, and compute stability and attribution to clus-

ter cores (P c
s∗ , ρs∗) for the most stable scales s∗. In Fig. 3, we

compare these results to simple spectral clustering (but stability

nor cores) with features from eq. (1), for which we kept K =
2, 4, 7, or 10 as they correspond to eigenvalue gaps of Lrw [1]

(this is a usual arbitrary rule of thumb to choose K [6]).

Discussion about the groups of photographic papers. The

dataset is structured in 9 groups from G0 to G8 of 10 sheets

each, plus 30 different samples. Most of these 9 groups in the

dataset end up being in core clusters at most of the scales, some

groups being very close and usually in the same core: G1 is

close to G3, because the paper in G1 is from the same groups

as papers in G3; G4 to G6 which are all glossy papers; and (less

so) G2 (Chamois reflectance) to G5 (Half Mat reflectance).

Other elements could be more surprising. At small scale,

group G8 is separated in 3 cores. After careful inspection,

there are indeed visual differences in G8 and the 3 groups make

sense: 83 and 84 (same brands, same date), 82, 85, 87, 89 (ad-

equate visual matches) and 81 and 90 (visually a good match



TAB. 1: Results of classification with 10 clusters.

Cluster = with Gi’s with others unclassified

Sp. Cl., Gi 87 3 0

Sp. Cl., others 17 13 0

Sc.Fct, Gi 85 3 2

Sc.Fct, others 16 1 13

with more spiky features than others in G8). Samples 71 and

69-70 are not classified in their expected group G7 and G6.

This makes sense as 69-70 are from a different brand than the

rest of G6, and 71 has indeed more rounded features than the

generally spiky features of G7.

Clustering in action: a scanning through scales. The sta-

bility of the scaling functions (see Fig. 2) retain 2, 4 and 10

clusters as relevant partitions, and this is an advantage of the

method – providing an estimation of the relevant number of

clusters, while the choice for K in spectral clustering is more

arbitrary. The stability also tells us that the spectral clustering

in 7 groups given in Fig. 1 (c) is not fully reliable. It is obtained

for scaling functions yet for a smaller stability. An explanation

might be that this scale with 7 clusters allows mostly for: 1)

an early splitting of G8 from the cluster of G1-G3, yet they

have all Luster reflectance, 2) splitting of G7 from G0 yet this

separation is, according to the dendrogram, almost equivalent

as separating also sample 71 from G7, and 3) the creation of

a group of other samples (in green) that could as well be also

split in 2, like G8. On the dendogram for K = 7, the splitting

in 10 clusters is actually apparent, and is more relevant.

Photographic papers not in groups. Table 1 summarizes

the classification, for samples in the Gi’s and the 30 other sam-

ples. A drawback of spectral clustering is that each of these pa-

pers necessarily ends up in a cluster (the closest), even though

it may hardly share anything with it. For K = 10, 17 such

samples are put in clusters associated of one (or some) of the 9

groups, while these connections are not supported by the meta-

data. With scaling functions, a more interesting conclusion is

reached: 13 of the other samples are left unclassified at small-

est scale (i.e., ρs∗(a) < 1), and only 2 of the samples from

the groups are not. This is relevant as there is no way that this

small dataset of papers captures 100 years of photo paper man-

ufacture: we expect to have some papers matching none.

We end up with only half of the other samples matching one

of the groups. Some are indeed correct matches. For example,

associated to cores of G1 and G3 (having metadata: Kodak,

Kodabromide, Fine Grained, Lustre, 1967), we find the papers

106 (Kodak, Azo, smooth, glossy); 112 (Kodak, Kodabromide,

buff luster, 1950); and 117 (Kodak, Kodabromide, smooth,

Glossy, 1959) match in manufacturers and paper brand. The in-

terpretation might be that manufactures had similar, and possi-

bly limited means to achieve a smooth, reflective, surface given

the realities of the materials and techniques they had available

at that time. However, the message is that, if anything in the

clustering casts doubts about the association – and the estimate

of cores is a way to raise doubts – one should refrain from con-

sidering the association valid.

5 Conclusion

We proposed an extension of spectral clustering, taking the

point of view of filterbanks in the graph Fourier domain. In-

stead of an ideal low-pass filterbank, we consider low-pass scal-

ing functions filterbanks, and add to the method measures of

stability (to estimate K) and a probability of correct classifi-

cation for each node. An extension of the work would be to

sue wavelet filterbanks on graphs [2] for classification, and we

might expect details at finer scales with them.

For art historians, it is of great added value to have a measure

of the confidence of classification, and to be able to keep some

samples unclassified: this is required so as to avoid drawing

conclusion from intempestive associations. As a complement

to scholarship about photographic prints, clustering should be

used in the most strict manner: not fully reliable associations

should not be considered by art historian scholars.
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