S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman et al., Volley: automated data placement for geo-distributed cloud services, Proceedings of the 7th USENIX conference on Networked systems design and implementation, NSDI'10, pp.2-2, 2010.

K. Agrawal, A. Benoit, F. Dufossé, and Y. Robert, Mapping filtering streaming applications with communication costs, Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures, SPAA '09, pp.19-28, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01062574

C. Aykanat, B. B. Cambazoglu, and B. Uçar, Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices, Journal of Parallel and Distributed Computing, vol.68, issue.5, pp.609-625, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00803479

A. Benoit, U. Catalyurek, Y. Robert, and E. Saule, A Survey of Pipelined Workflow Scheduling: Models and Algorithms, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521712

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su et al., Characterization of scientific workflows, Workflows in Support of Large-Scale Science, pp.1-10, 2008.

J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe et al., Resource monitoring and management with OVIS to enable HPC in cloud computing environments. Parallel and Distributed Processing Symposium, International, vol.0, pp.1-8, 2009.

U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. T. Heaphy et al., A repartitioning hypergraph model for dynamic load balancing, J. Parallel Distrib. Comput, vol.69, pp.711-724, 2009.

Ü. V. Çatalyürek and C. Aykanat, PaToH: A multilevel hypergraph partitioning tool, 1999.

Ü. V. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain decomposition, ACM/IEEE SC2001, 2001.

J. M. Cope, N. Trebon, H. M. Tufo, and P. Beckman, Robust data placement in urgent computing environments, Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, pp.1-13, 2009.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta et al., Pegasus: Mapping scientific workflows onto the grid, Grid Computing, vol.3165, pp.131-140, 2004.

T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem et al., Askalon: A development and grid computing environment for scientific workflows, pp.450-471, 2007.

C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network partitions, Proceedings of the 19th ACM/IEEE Design Automation Conference, pp.175-181, 1982.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, 1979.

C. Ho?a, G. Mehta, T. Freeman, E. Deelman, K. Keahey et al., On the use of cloud computing for scientific workflows, Proceedings of the 2008 Fourth IEEE International Conference on eScience, pp.640-645, 2008.

H. Huang and L. Wang, P&P: A combined push-pull model for resource monitoring in cloud computing environment. Cloud Computing, IEEE International Conference on, vol.0, pp.260-267, 2010.

G. Juve and E. Deelman, Scientific workflows and clouds, Crossroads, vol.16, pp.14-18, 2010.

G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman et al., Data sharing options for scientific workflows on Amazon EC2, Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '10, pp.1-9, 2010.

G. Karypis and V. Kumar, MeTiS A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4.0, 1998.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, 1990.

B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger et al., Scientific workflow management and the kepler system: Research articles, Concurrency and Computation: Practice and Experience, vol.18, pp.1039-1065, 2006.

S. Pandey and R. Buyya, Scheduling data intensive workflow applications based on multi-source parallel data retrieval in distributed computing networks, 2011.

S. Pandey and R. Buyya, Scheduling and management techniques for data-intensive application workflows, Data Intensive Distributed Computing: Challenges and Solutions for Large-scale Information Management, 2010.

A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou et al., Scheduling data-intensiveworkflows onto storage-constrained distributed resources, Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGRID '07, pp.401-409, 2007.

T. Shibata, S. Choi, and K. Taura, File-access characteristics of data-intensice workflow applications, Proc. 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp.522-525, 2010.

T. Shibata, S. Choi, and K. Taura, File-access patterns of data-intensive workflow applications and their implications to distributed filesystems, Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC '10, pp.746-755, 2010.

Y. Simmhan, R. Barga, C. Van-ingen, E. Lazowska, and A. Szalay, On building scientific workflow systems for data management in the cloud, Proceedings of the 2008 Fourth IEEE International Conference on eScience, pp.434-435, 2008.

W. M. Van-der-aalst, A. H. Hofstede, B. Kiepuszewski, and A. P. Barros, Workflow patterns. Distrib. Parallel Databases, vol.14, pp.5-51, 2003.

A. Weiss, Computing in the clouds. netWorker, vol.11, pp.16-25, 2007.

D. Yuan, Y. Yang, X. Liu, and J. Chen, A data placement strategy in scientific cloud workflows, Future Generation Computing Systems, vol.26, pp.1200-1214, 2010.