index - Fermions Fortement Corrélés Accéder directement au contenu

Derniers dépôts, tout type de documents

Quantum electrodynamics in <math display="inline"><mn>2</mn><mo>+</mo><mn>1</mn></math> dimensions (<math display="inline"><mrow><msub><mrow><mi>QED</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>) has been proposed as a critical field theory describing the low-energy effective theory of a putative algebraic Dirac spin liquid or of quantum phase transitions in two-dimensional frustrated magnets. We provide compelling evidence that the intricate spectrum of excitations of the elementary but strongly frustrated <math display="inline"><mrow><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub><mtext>-</mtext><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> Heisenberg model on the triangular lattice is in one-to-one correspondence to a zoo of excitations from <math display="inline"><mrow><msub><mrow><mi>QED</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>, in the quantum spin liquid regime. This evidence includes a large manifold of explicitly constructed monopole and bilinear excitations of <math display="inline"><mrow><msub><mrow><mi>QED</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>, which is thus shown to serve as an organizing principle of phases of matter in triangular lattice antiferromagnets and their low-lying excitations. Moreover, we observe signatures of emergent valence-bond solid (VBS) correlations, which can be interpreted either as evidence of critical VBS fluctuations of an emergent Dirac spin liquid or as a transition from the 120° Néel order to a VBS whose quantum critical point is described by <math display="inline"><mrow><msub><mrow><mi>QED</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>. Our results are obtained by comparing ansatz wave functions from a parton construction to exact eigenstates obtained using large-scale exact diagonalization up to <math display="inline"><mi>N</mi><mo>=</mo><mn>48</mn></math> sites.

Continuer la lecture Partager

Topological insulators and superconductors support extended surface states protected against the otherwise localizing effects of static disorder. Specifically, in the Wigner-Dyson insulators belonging to the symmetry classes A, AI, and AII, a band of extended surface states is continuously connected to a likewise extended set of bulk states forming a “bridge” between different surfaces via the mechanism of spectral flow. In this work we show that this mechanism is absent in the majority of non-Wigner-Dyson topological superconductors and chiral topological insulators. In these systems, there is precisely one point with granted extended states, the center of the band, <math display="inline"><mi>E</mi><mo>=</mo><mn>0</mn></math>. Away from it, states are spatially localized, or can be made so by the addition of spatially local potentials. Considering the three-dimensional insulator in class AIII and winding number <math display="inline"><mi>ν</mi><mo>=</mo><mn>1</mn></math> as a paradigmatic case study, we discuss the physical principles behind this phenomenon, and its methodological and applied consequences. In particular, we show that low-energy Dirac approximations in the description of surface states can be treacherous in that they tend to conceal the localizability phenomenon. We also identify markers defined in terms of Berry curvature as measures for the degree of state localization in lattice models, and back our analytical predictions by extensive numerical simulations. A main conclusion of this work is that the surface phenomenology of non-Wigner-Dyson topological insulators is a lot richer than that of their Wigner-Dyson siblings, extreme limits being spectrumwide quantum critical delocalization of all states versus full localization except at the <math display="inline"><mi>E</mi><mo>=</mo><mn>0</mn></math> critical point. As part of our study we identify possible experimental signatures distinguishing between these different alternatives in transport or tunnel spectroscopy.

Continuer la lecture Partager

Chiral Spin Liquids (CSL) based on spin-1/2 fermionic Projected Entangled Pair States (fPEPS) are considered on the square lattice. First, fPEPS approximants of Gutzwiller-projected Chern insulators (GPCI) are investigated by Variational Monte Carlo (VMC) techniques on finite size tori. We show that such fPEPS of finite bond dimension can correctly capture the topological properties of the chiral spin liquid, as the exact GPCI, with the correct topological ground state degeneracy on the torus. Further, more general fPEPS are considered and optimized (on the infinite plane) to describe the CSL phase of a chiral frustrated Heisenberg antiferromagnet. The chiral modes are computed on the edge of a semi-infinite cylinder (of finite circumference) and shown to follow the predictions from Conformal Field Theory. In contrast to their bosonic analogs the (optimized) fPEPS do not suffer from the replication of the chiral edge mode in the odd topological sector.

Continuer la lecture Partager

Non-abelian symmetries are thought to be incompatible with many-body localization, but have been argued to produce in certain disordered systems a broad non-ergodic regime distinct from many-body localization. In this context, we present a numerical study of properties of highly-excited eigenstates of disordered chains with SU(3) symmetry. We find that while weakly disordered systems rapidly thermalize, strongly-disordered systems indeed exhibit non-thermal signatures over a large range of system sizes, similar to the one found in previously studied SU(2) systems. Our analysis is based on the spectral, entanglement, and thermalization properties of eigenstates obtained through large-scale exact diagonalization exploiting the full SU(3) symmetry.

Continuer la lecture Partager

Despite enormous efforts devoted to the study of the many-body localization (MBL) phenomenon, the nature of the high-energy behavior of the Heisenberg spin chain in a strong random magnetic field is lacking consensus. Here, we take a step back by exploring the weak interaction limit starting from the Anderson localized (AL) insulator. Through shift-invert diagonalization, we find that below a certain disorder threshold $h^*$, weak interactions necessarily lead to ergodic instability, whereas at strong disorder the AL insulator directly turns into MBL. This agrees with a simple interpretation of the avalanche theory for restoration of ergodicity. We further map the phase diagram for the generic XXZ model in the disorder $h$-- interaction $\Delta$ plane. Taking advantage of the total magnetization conservation, our results unveil the remarkable behavior of the spin-spin correlation functions: in the regime indicated as MBL by standard observables, their exponential decay undergoes a unique inversion of orientation $\xi_z>\xi_x$. We find that the longitudinal length $\xi_z$ is a key quantity for capturing ergodic instabilities, as it increases with system size near the thermal phase, in sharp contrast to its transverse counterpart $\xi_x$.

Continuer la lecture Partager

Sujets

Strong interaction Polaron Color Atomic Physics physicsatom-ph Collinear T-J model Antiferromagnetism Tensor networks Quantum dimer models t-J model superconductivity magnetism Quantum physics Dimension Confinement Variational quantum Monte Carlo Chaines de spin Low-dimensional systems Solids Magnetic quantum oscillations High-Tc 0270Ss Boson Magnétisme quantique Condensed matter Strongly Correlated Electrons Entanglement Théorie de la matière condensée Superconductivity Liquid Strongly Correlated Electrons cond-matstr-el Superconductivity cond-matsupr-con Bose glass Numerical methods Correlation Magnetism Thermodynamical Dimeres 7130+h Anyons Réseaux de tenseurs Advanced numerical methods Strongly correlated systems Champ magnétique Spin liquids Many-body problem Valence bond crystals Électrons fortement corrélés Supraconductivité Deconfinement Frustration Entanglement quantum Chaines de spin1/2 Quantum Gases cond-matquant-gas 7510Kt Ground state Quantum dimer models t-J model Critical phenomena Condensed Matter Gas Spin chain Benchmark Excited state Heisenberg model 7127+a 7510Jm Kagome lattice Quantum information Condensed matter physics Antiferromagnetic conductors Spin Condensed Matter Electronic Properties Arrays of Josephson junctions Disorder Electronic structure and strongly correlated systems Quantum magnetism Basse dimension Low dimension 7540Cx Collective modes Variational Monte Carlo Apprentissage automatique Chaînes des jonctions 6470Tg Physique quantique FOS Physical sciences Classical spin liquid Méthodes numériques Quasiparticle Aimants quantiques Atom Dirac spin liquid Bosons de coeur dur Monte-Carlo quantique Condensed matter theory Physique de la matière condensée Network Antiferromagnétisme 7540Mg Systèmes fortement corrélés Anti-ferromagnetism Plateaux d'aimantation

Statistiques

Nombre de fichiers déposés

63

Nombre de notices déposées

337