Skip to Main content Skip to Navigation
Conference papers

Emerging Computing Devices: Challenges and Opportunities for Test and Reliability

Abstract : The paper addresses some of the opportunities and challenges related to test and reliability of three major emerging computing paradigms; i.e., Quantum Computing, Computing engines based on Deep Neural Networks for AI, and Approximate Computing (AxC). We present a quantum accelerator showing that it can be done even without the presence of very good qubits. Then, we present Dependability for Arti)cial Intelligence (AI) oriented Hardware. Indeed, AI applications shown relevant resilience properties to faults, meaning that the testing strongly depends on the application behavior rather than on the hardware structure. We will cover AI hardware design issues due to manufacturing defects, aging faults, and soft errors. Finally, We present the use of AxC to reduce the cost of hardening a digital circuit without impacting its reliability. In other words how to go beyond usual modular redundancy scheme.
Complete list of metadata

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03379074
Contributor : Isabelle Gouat Connect in order to contact the contributor
Submitted on : Thursday, October 14, 2021 - 7:30:26 PM
Last modification on : Friday, October 22, 2021 - 3:07:43 PM

Identifiers

Citation

Alberto Bosio, Ian O'Connor, Marcello Traiola, Jorge Echavarria, Jürgen Teich, et al.. Emerging Computing Devices: Challenges and Opportunities for Test and Reliability. IEEE European Test Symposium (ETS 2021), May 2021, Bruges, Belgium. pp.1-10, ⟨10.1109/ETS50041.2021.9465409⟩. ⟨lirmm-03379074⟩

Share

Metrics

Record views

106

Files downloads

24